算法:对求解步骤的描述,是一组指令的有序序列,算法必须是有穷的,可行的,并且要有输入输出
通常我们对算法设计的要求有
正确性:应该满足具体问题的需求。
可读性:出了让机器执行,算法设计还应方便人的阅读和交流
健壮性:经得起测试
效率与低存储量:算法执行的时间要越短越好,占用的存储空间应该越少越好
算法效率的度量:
一般分为事后统计和事前分析估算
因为计算机的硬件,软件环境等因素会常常掩盖算法本身的优劣,所以人们常常采用事前分析的方法
这样抛开计算机硬件和软件相关因素,一个特定算法的复杂度只依赖于问题的规模
一个算法是由控制结构(顺序,分支,循环三种),和原操作构成,算法的时间取决与两者的综合
一般情况下算法重复次数是问题规模n的某个函数(f(n))
T(n) = O(f(n))
eg:
for(i = 1; i <= n ; i++){
for(j = 1 ; j <= n ; j++){
c[i][j] = 0;
for(k = 1 ; k <= n ; k++){
c[i][j] += a[i][k] * b[k][j];
}
}
}
算法复杂度:T(n) = O(n*n*n)
理想状态下随着n的增大算法执行时间的增长率和f(n)的增长率相同,称为算法的渐近时间复杂度,简称时间复杂度
算法所需要的存储空间S(n) = O(f(n))称为空间复杂度