算法和算法分析基础

算法:对求解步骤的描述,是一组指令的有序序列,算法必须是有穷的,可行的,并且要有输入输出

通常我们对算法设计的要求有

正确性:应该满足具体问题的需求。

可读性:出了让机器执行,算法设计还应方便人的阅读和交流

健壮性:经得起测试

效率与低存储量:算法执行的时间要越短越好,占用的存储空间应该越少越好

 

算法效率的度量

一般分为事后统计和事前分析估算

因为计算机的硬件,软件环境等因素会常常掩盖算法本身的优劣,所以人们常常采用事前分析的方法

这样抛开计算机硬件和软件相关因素,一个特定算法的复杂度只依赖于问题的规模

一个算法是由控制结构(顺序,分支,循环三种),和原操作构成,算法的时间取决与两者的综合

一般情况下算法重复次数是问题规模n的某个函数(f(n))

T(n) = O(f(n))

eg:

for(i = 1; i <= n ;  i++){

    for(j = 1 ; j <= n ; j++){

        c[i][j] = 0;

        for(k = 1 ; k <= n ; k++){

           c[i][j] += a[i][k] * b[k][j];

         }

    }

}

算法复杂度:T(n) = O(n*n*n)

理想状态下随着n的增大算法执行时间的增长率和f(n)的增长率相同,称为算法的渐近时间复杂度,简称时间复杂度

算法所需要的存储空间S(n) = O(f(n))称为空间复杂度

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值