原题链接:1183 编辑距离
题目分析:这个最少的操作次数,通常被称之为编辑距离。“编辑距离”一次本身具有最短的意思在里面。因为题目有“最短”这样的关键词,首先我们想到的是 。是的,当 的距离为 的距离为 的时候,我们可以找到这样的操作次数的界限:
- 把 中字符全删了,再添加 的全部字符,操作次数 。
- 把 中字符删或加成 个,再修改操作次数最多 。
虽然,我们找到了这样的上界, 从实际角度并不可行,因为搜索空间是指数的,这取决于 中的字符种类——具体的数量级不好估计。
根据LCS的思路,做两字符串的比较。 表示 字符串在 ,于 字符串在 时的最小改变量。
递推式如下:
初始值:
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
using namespace std;
const int MAX = 1005;
int dp[MAX][MAX];
string a, b;
int main() {
memset(dp, 0, sizeof(dp));
cin >> a >> b;
for (int i = 0; i <= a.length(); i++) dp[i][0] = i;
for (int i = 0; i <= b.length(); i++) dp[0][i] = i;
for (int i = 1; i <= a.length(); i++)
for (int j = 1; j <= b.length(); j++)
dp[i][j] = min(dp[i - 1][j - 1] + (a[i - 1] == b[j - 1] ? 0 : 1),
min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
cout << dp[a.length()][b.length()] << endl;
return 0;
}