2022“杭电杯”中国大学生算法设计超级联赛(4)A、G、K

这篇博客探讨了如何利用动态规划和后缀和的方法解决两个数学问题:1001-LinkwithBracketSequenceII 和 1007-ClimbStairs。在1001问题中,博主展示了如何通过区间DP解决括号序列问题,考虑了各种匹配和缺失情况。而在1007问题中,利用后缀和和二分查找,确定了能够击败所有怪兽的最优跳跃策略。文章深入浅出地解释了这两种算法在处理复杂问题时的有效性。
摘要由CSDN通过智能技术生成

1001-Link with Bracket Sequence II

区间 d p dp dp 分类讨论,具体分类见代码。

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 550;
const int mod = 1e9 + 7;
int dp[N][N];
int dp2[N][N];
int a[N];

void solve() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> a[i];

    for (int len = 2; len <= n; len += 2) {
        for (int i = 1; i + len - 1 <= n; i++) {
            int j = i + len - 1;
            dp[i][j] = 0;
            //两端匹配
            if (a[i] > 0 && (a[i] + a[j]) == 0) {
                if (len == 2)
                    dp[i][j] += 1;
                else
                    dp[i][j] += dp2[i + 1][j - 1];
            }
            //两端缺失
            else if (a[i] == 0 && a[j] == 0) {
                if (len == 2)
                    dp[i][j] += m;
                else
                    dp[i][j] += m * dp2[i + 1][j - 1];

            }
            //两端一端缺失
            else if ((a[i] == 0 && a[j] < 0) || (a[j] == 0 && a[i] > 0)) {
                if (len == 2)
                    dp[i][j] += 1;
                else
                    dp[i][j] += dp2[i + 1][j - 1];
            }
            dp[i][j] %= mod;
        }
        for (int i = 1; i + len - 1 <= n; i++) {
            int j = i + len - 1;
            dp2[i][j] = dp[i][j];
            for (int k = i + 1; k < j; k += 2) {
                dp2[i][j] += dp2[i][k] * dp[k + 1][j];
                dp2[i][j] %= mod;
            }
        }
    }

    cout << dp2[1][n] << endl;
}

signed main() {
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int T = 1;
    cin >> T;
    for (int i = 1; i <= T; i++) {
        solve();
    }
}

1007-Climb Stairs

由于要求打完所有怪兽,因此即使跳到后几位也需要通过连续下楼操作将之前跳过的依次取完,考虑采用后缀和,并通过二分答案找到能够击败n+1层怪兽且距当前位最近的应该跳到的层数。若该距离超过 k k k 则不可行。

#include <bits/stdc++.h>
#define int long long
#define endl "\n"
#define PII pair<int, int>
using namespace std;

const int N = 1e5 + 10;
int a[N];
int sum[N];
int now;
bool check(int mid, int pos) {
    if (sum[pos + 1] - sum[mid + 1] + now >= a[pos])
        return 0;
    else
        return 1;
}

void solve() {
    int n, k;
    cin >> n >> now >> k;
    for (int i = 1; i <= n + 10; i++)
        sum[i] = 0;

    for (int i = 1; i <= n; i++)
        cin >> a[i];
    for (int i = n; i >= 1; i--)  //后缀
        sum[i] = sum[i + 1] + a[i];

    int maxx = 0, pre = 1;
    for (int i = 1; i <= n; i++) {
        int l = i + 1, r = n + 1;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(mid, i))
                l = mid + 1;
            else
                r = mid;
        }
        // cout << l << endl;
        if (now >= a[i])
            l = i;
        if (l >= min(pre + k, n + 1)) {  //大于k
            cout << "NO" << endl;
            return;
        }
        maxx = max(maxx, l);
        if (l >= maxx && l == i) {
            now += sum[pre] - sum[maxx + 1];
            pre = i + 1;
            maxx = 0;
        }
    }
    cout << "YES" << endl;
}
signed main() {
    int T = 1;
    cin >> T;
    while (T--)
        solve();
    return 0;
}

1011-Link is as bear

将会对异或和产生负贡献的数字操作成 0 0 0 后即可转化为线性基板子题

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 10;
int p[60], t, n, x, ans;

inline void insert(int x) {
    for (int i = 55; i + 1; i--) {
        if (!(x >> i))
            continue;
        if (!p[i]) {
            p[i] = x;
            break;
        }
        x ^= p[i];
    }
}
signed main() {
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> t;
    while (t--) {
        memset(p, 0, sizeof p);
        cin >> n;
        while (n--) {
            cin >> x;
            insert(x);
        }
        for (int i = 55; i >= 0; i--)
            if ((ans ^ p[i]) > ans)
                ans ^= p[i];
        cout << ans << endl;
        ans = 0;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值