d i f f i c u l t : 2500 difficult:2500 difficult:2500
题意
给定一个长度为 n n n 的数组,数组内的元素只能是 0 0 0 和 1 1 1,每次操作可以任意选择在 [ 1 , n − 2 ] [1,n-2] [1,n−2] 范围内的 i i i ,并使 a i = a i + 1 = a i + 2 = a i ⊕ a i + 1 ⊕ a i + 2 a_i=a_{i+1}=a_{i+2}=a_i ⊕ a_{i+1} ⊕ a_{i+2} ai=ai+1=ai+2=ai⊕ai+1⊕ai+2 ,问是否能够在 n n n 次操作内将所有元素变为 0 0 0 ,并输出操作次数及对应操作选择的下标 i i i 。
容易知道,连续的三个元素在操作前后,异或和不会产生变化,因此若所有元素的异或和不为 0 0 0 ,则一定无解。而在有解的情况下,容易证得 n n n 为奇数时一定有解,示例如下:
下标 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
初始值 | a a a | b b b | c c c | d d d | e e e | f f f | g g g |
对 i = 5 i=5 i=5 操作 | a a a | b b b | c c c | d d d | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g |
对 i = 3 i=3 i=3 操作 | a a a | b b b | c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g c⊕d⊕e⊕f⊕g | c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g c⊕d⊕e⊕f⊕g | c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g c⊕d⊕e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g |
对 i = 1 i=1 i=1 操作 | 0 0 0 | 0 0 0 | 0 0 0 | c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g c⊕d⊕e⊕f⊕g | c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g c⊕d⊕e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g |
对 i = 3 i=3 i=3 操作 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g | e ⊕ f ⊕ g e⊕f⊕g e⊕f⊕g |
对 i = 5 i=5 i=5 操作 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
当 n n n 为偶数时,若 a 1 a_1 a1 或 a n a_n an 的值为 0 0 0, 可以通过忽略对应位,从而转化为上述 n n n 为奇数的情况讨论。
当 n n n 为奇数且两端均为 1 1 1 时,若中间段所有的 a 2 k = = a 2 k + 1 a_{2k}==a_{2k+1} a2k==a2k+1,则无解,例: 1 1 1 0 0 0 0 0 0 1 1 1 。
当中间段不满足上述要求时,可以将数组切割成长为奇数且保证有解的两部分,其中切割点为:前缀长度为奇数且异或和为 0 0 0,例: 1 0 0 1 1 1 0 0 1 1 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1 1 0 0 1 1 1 0 0 1 1 可切割为 1 0 0 1 1 1 0 1\ 0\ 0\ 1\ 1\ 1\ 0 1 0 0 1 1 1 0 和 0 1 1 0\ 1\ 1 0 1 1 两部分,再分别代回 n n n 为奇数情况下讨论。
参考代码
#include <bits/stdc++.h>
#define int long long
#define endl "\n"
using namespace std;
const int N = 2e5 + 10;
int a[N], ans[N];
void solve() {
int n;
cin >> n;
int sum = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
sum ^= a[i];
}
if (sum != 0) {
cout << "NO" << endl;
return;
}
int cnt = 0;
//偶数 但最后一位为0 可化为奇数段
if (n % 2 == 0 && a[n] == 0)
n--;
//奇数情况
if (n % 2 == 1) {
cout << "YES" << endl;
cout << n - 2 << endl;
for (int i = n - 2; i >= 1; i -= 2) {
cout << i << " ";
}
for (int i = 3; i <= n - 2; i += 2) {
cout << i << " ";
}
cout << endl;
return;
}
//偶数 但第一位为0 可化为奇数
if (n % 2 == 0 && a[1] == 0) {
cout << "YES" << endl;
cout << n - 3 << endl;
for (int i = n - 2; i >= 2; i -= 2) {
cout << i << " ";
}
for (int i = 4; i <= n - 2; i += 2)
cout << i << " ";
cout << endl;
return;
}
//两边都为1的偶数
int flag = 1;
sum = a[1] ^ a[2];
for (int i = 2; i <= n - 2; i += 2) {
if (a[i] != a[i + 1]) {
flag = 0;
break;
}
}
if (flag) {
cout << "NO" << endl;
return;
}
cout << "YES" << endl;
int pos = 0;
for (int i = 3; i <= n; i++) {
sum ^= a[i];
if (sum == 0 && i % 2 == 1) { //存在前缀异或和为0且长度为奇数
pos = i;
break;
}
}
//前半长度:pos 后半:n-pos
//前半需要:pos-2 后半:n-pos-2 共n-4
cout << n - 4 << endl;
for (int i = pos - 2; i >= 1; i -= 2)
cout << i << " ";
for (int i = 3; i <= pos - 2; i += 2)
cout << i << " ";
for (int i = n - 2; i >= pos + 1; i -= 2)
cout << i << " ";
for (int i = pos + 3; i <= n - 2; i += 2)
cout << i << " ";
cout << endl;
}
signed main() {
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int T = 1;
cin >> T;
while (T--)
solve();
return 0;
}