codeforces 1572B. Xor of 3 (div1)

13 篇文章 2 订阅
6 篇文章 0 订阅

d i f f i c u l t : 2500 difficult:2500 difficult2500

传送门

题意

给定一个长度为 n n n 的数组,数组内的元素只能是 0 0 0 1 1 1,每次操作可以任意选择在 [ 1 , n − 2 ] [1,n-2] [1,n2] 范围内的 i i i ,并使 a i = a i + 1 = a i + 2 = a i ⊕ a i + 1 ⊕ a i + 2 a_i=a_{i+1}=a_{i+2}=a_i ⊕ a_{i+1} ⊕ a_{i+2} ai=ai+1=ai+2=aiai+1ai+2 ,问是否能够在 n n n 次操作内将所有元素变为 0 0 0 ,并输出操作次数及对应操作选择的下标 i i i

容易知道,连续的三个元素在操作前后,异或和不会产生变化,因此若所有元素的异或和不为 0 0 0 ,则一定无解。而在有解的情况下,容易证得 n n n 为奇数时一定有解,示例如下:

下标1234567
初始值 a a a b b b c c c d d d e e e f f f g g g
i = 5 i=5 i=5 操作 a a a b b b c c c d d d e ⊕ f ⊕ g e⊕f⊕g efg e ⊕ f ⊕ g e⊕f⊕g efg e ⊕ f ⊕ g e⊕f⊕g efg
i = 3 i=3 i=3 操作 a a a b b b c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g cdefg c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g cdefg c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g cdefg e ⊕ f ⊕ g e⊕f⊕g efg e ⊕ f ⊕ g e⊕f⊕g efg
i = 1 i=1 i=1 操作 0 0 0 0 0 0 0 0 0 c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g cdefg c ⊕ d ⊕ e ⊕ f ⊕ g c⊕d⊕e⊕f⊕g cdefg e ⊕ f ⊕ g e⊕f⊕g efg e ⊕ f ⊕ g e⊕f⊕g efg
i = 3 i=3 i=3 操作 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e ⊕ f ⊕ g e⊕f⊕g efg e ⊕ f ⊕ g e⊕f⊕g efg
i = 5 i=5 i=5 操作 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n n n 为偶数时,若 a 1 a_1 a1 a n a_n an 的值为 0 0 0, 可以通过忽略对应位,从而转化为上述 n n n 为奇数的情况讨论。

n n n 为奇数且两端均为 1 1 1 时,若中间段所有的 a 2 k = = a 2 k + 1 a_{2k}==a_{2k+1} a2k==a2k+1,则无解,例: 1 1 1 0 0 0 0 0 0 1 1 1

当中间段不满足上述要求时,可以将数组切割成长为奇数且保证有解的两部分,其中切割点为:前缀长度为奇数且异或和为 0 0 0,例: 1   0   0   1   1   1   0   0   1   1 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1 1 0 0 1 1 1 0 0 1 1 可切割为 1   0   0   1   1   1   0 1\ 0\ 0\ 1\ 1\ 1\ 0 1 0 0 1 1 1 0 0   1   1 0\ 1\ 1 0 1 1 两部分,再分别代回 n n n 为奇数情况下讨论。

参考代码

#include <bits/stdc++.h>
#define int long long
#define endl "\n"
using namespace std;
const int N = 2e5 + 10;

int a[N], ans[N];

void solve() {
    int n;
    cin >> n;
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        sum ^= a[i];
    }
    if (sum != 0) {
        cout << "NO" << endl;
        return;
    }
    int cnt = 0;

    //偶数 但最后一位为0 可化为奇数段
    if (n % 2 == 0 && a[n] == 0)
        n--;

    //奇数情况
    if (n % 2 == 1) {
        cout << "YES" << endl;
        cout << n - 2 << endl;
        for (int i = n - 2; i >= 1; i -= 2) {
            cout << i << " ";
        }
        for (int i = 3; i <= n - 2; i += 2) {
            cout << i << " ";
        }
        cout << endl;
        return;
    }

    //偶数 但第一位为0 可化为奇数
    if (n % 2 == 0 && a[1] == 0) {
        cout << "YES" << endl;
        cout << n - 3 << endl;
        for (int i = n - 2; i >= 2; i -= 2) {
            cout << i << " ";
        }
        for (int i = 4; i <= n - 2; i += 2)
            cout << i << " ";
        cout << endl;
        return;
    }

    //两边都为1的偶数
    int flag = 1;
    sum = a[1] ^ a[2];
    for (int i = 2; i <= n - 2; i += 2) {
        if (a[i] != a[i + 1]) {
            flag = 0;
            break;
        }
    }
    if (flag) {
        cout << "NO" << endl;
        return;
    }

    cout << "YES" << endl;
    int pos = 0;
    for (int i = 3; i <= n; i++) {
        sum ^= a[i];
        if (sum == 0 && i % 2 == 1) {  //存在前缀异或和为0且长度为奇数
            pos = i;
            break;
        }
    }

    //前半长度:pos 后半:n-pos
    //前半需要:pos-2  后半:n-pos-2 共n-4
    cout << n - 4 << endl;
    for (int i = pos - 2; i >= 1; i -= 2)
        cout << i << " ";
    for (int i = 3; i <= pos - 2; i += 2)
        cout << i << " ";
    for (int i = n - 2; i >= pos + 1; i -= 2)
        cout << i << " ";
    for (int i = pos + 3; i <= n - 2; i += 2)
        cout << i << " ";
    cout << endl;
}

signed main() {
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int T = 1;
    cin >> T;
    while (T--)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值