快速排序的中心思想
快速排序利用的是分治思想,将一个大数组的排序划分为多个小数组的排序,最后进行合并便是排序的结果。
首先,需要从数组中选择一个主元,通常为数组的第一个元素或最后一个元素(好操作)。接下来的工作就是要将数组中的其他元素与主元进行对比,小于主元的元素放在主元的左边,大于主元的元素放在主元的右边。
例如有数组 A[begin...end] 经过上述步骤后会得到A[begin...q-1], A[q], A[q+1...end]
其中A[q]为主元,子数组 A[begin...q-1] 的所有元素小于主元,子数组A[q+1...end] 的所有元素大于主元。
此时,能确定的就是A[q]的位置,并且该位置就是最终排序后A[q]的位置,不会再变。
接下来要做的就是让两个子数组A[begin...q-1], A[q+1...end]重复上述步骤,直到每个子数组只剩一个元素,此时就是最终排序完成的数组。
中午突然发现忘掉了快速排序的具体实现过程,下午赶快找空闲时间写一次。
快速排序有很多种方法,首先我们要了解的是快速排序创始人 C. A. R. Hoare 的实现方法。
一. 快速排序1
比如有数组{3,8,4,9,2,7,1},选择3为主元,有两个变量i,j 分别从数组头尾向中间滑动,每当j从尾开始找到小于主元的元素时停止,换i从头查找大于主元的元素,找到两个元素后交换两个元素的位置,直到i和j相等。(也可以用相反的方式,最终得到逆序的数组)
例如{
3,8,4,9,2,7,1},主元为3,j从尾搜索直到A[j]=1停止,i从头搜索直到A[i]=8停止,交换位置。
→{ 3,1,4,9,2,7,8},接下来,j会一直搜索直到A[j]=2,i搜索到A[i]=4,交换位置。
→