- 人工智能应用加速发展
推荐
语音识别
信用评分
alphago
自动驾驶
机器人
用户画像
- 人工智能核心点
数据模型
处理能力
大数据
- 计算能力的提升加速人工智能的发展
GPU
NPU,hisi
ARM, rockchip
- 单机数据分析向分布式计算发展
- 大数据的理解与分析需要AI
人工智能可学习大量的数据,高效分析挖掘出数据价值
- AI历史——三次浪潮
1956~1976专家系统
1976~2006人工神经网络,深度学习尚未突破
2006~至今,基于互联网大数据的深度学习
- 人工智能、机器学习、深度学习的关系
早期规则化方法,80年代后用统计方法,2012年后深度学习方法
- 现状
应用层:互联网,安防,医疗,金融,运营商
接口层:TensorFlow,Caffe,CNTK,MXNet等
算法层:深度学习发展迅速,一些关键场景其他AI算法仍有用武之地
框架层:TensorFlow等框架
基础设施层:CPU与GPU集群大范围使用,云平台蚕食传统Data Center市场
- 趋势
应用层:深入各个领域
接口层:Workflow,Model Sharing,User Friendly
算法层:AutoML,算法,系统,训练,推断多维度发展
框架层:中间层编译优化,开放协议onnx
基础设施层:GPU集群,ASIC,FPGA,SOC
- 主流技术栈