人工智能简介

  • 人工智能应用加速发展

推荐

语音识别

信用评分

alphago

自动驾驶

机器人

用户画像

  • 人工智能核心点

数据模型

处理能力

大数据

  • 计算能力的提升加速人工智能的发展

         GPU

          NPU,hisi

          ARM, rockchip

  • 单机数据分析向分布式计算发展
  • 大数据的理解与分析需要AI

人工智能可学习大量的数据,高效分析挖掘出数据价值

  • AI历史——三次浪潮

1956~1976专家系统

1976~2006人工神经网络,深度学习尚未突破

2006~至今,基于互联网大数据的深度学习

  • 人工智能、机器学习、深度学习的关系

        早期规则化方法,80年代后用统计方法,2012年后深度学习方法

  • 现状

应用层:互联网,安防,医疗,金融,运营商

接口层:TensorFlow,Caffe,CNTK,MXNet等

算法层:深度学习发展迅速,一些关键场景其他AI算法仍有用武之地

框架层:TensorFlow等框架 

基础设施层:CPU与GPU集群大范围使用,云平台蚕食传统Data Center市场

  • 趋势

应用层:深入各个领域

接口层:Workflow,Model Sharing,User Friendly

算法层:AutoML,算法,系统,训练,推断多维度发展

框架层:中间层编译优化,开放协议onnx

基础设施层:GPU集群,ASIC,FPGA,SOC

 

  • 主流技术栈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RabinSong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值