- 博客(1408)
- 资源 (2)
- 收藏
- 关注
原创 高通SEE架构深度解析(3): 核心组件从功能模块到安全体系
高通SEE架构是传感器管理与安全处理的核心框架,围绕高效调度与安全隔离两大目标设计。其核心组件包括:1)传感器管理组件(调度中枢),负责传感器全生命周期管理;2)数据处理组件(数据流转通道),实现数据采集、加工与分发;3)安全隔离组件(安全防护屏障),通过TEE、QSEE等机制保护敏感数据;4)接口适配组件(跨平台桥梁),提供标准化接口对接外部系统。该架构解决了传统架构资源利用率低、数据延迟高和安全风险大等问题,为多平台传感器应用提供高效安全的解决方案。
2026-01-29 12:07:36
601
原创 高通SEE架构深度解析(2): Sensor HAL层代码实战与ADSP通信
本文深入解析高通SEE架构的Sensor HAL层实现与硬件协同机制。在软件层面,SEE通过Sensor HAL层对接Android系统,关键组件包括:1)HIDL标准接口定义(ISensors.hal);2)接口实现(Sensors.cpp)负责将Android调用转发至SEE;3)传感器核心结构体(sns_sensor.h)管理传感器实例。代码主要存放在vendor/qcom/proprietary/sensors-see/目录,通过Android.mk编译生成HAL库。硬件层面,SEE通过ADSP处理
2026-01-29 11:50:37
805
原创 高通SEE架构深度解析(1): 架构原理与核心组件
高通推出的SEE(Sensors Execution Environment)架构重构了传感器管理系统,通过模块化设计和安全隔离机制解决了传统架构的四大痛点:框架复杂、API繁多、数据格式不统一和安全机制缺失。SEE采用四层核心设计(客户端层、核心服务层、数据处理层和硬件适配层),实现了传感器资源的高效调度与数据安全流转。相比传统架构,SEE将框架数量从4个精简为1个,API从5类减少到2类,并采用浮点单精度统一数据格式。
2026-01-29 11:11:55
400
原创 在高通跃龙QCS9075 平台上部署 Stable Diffusion v2.1 (2): 优化提升推理速度与图像质量
本文探讨了在高通跃龙QCS9075平台上优化Stable Diffusion 2.1性能的方法。通过模型配置优化(量化精度调整、子图融合)、推理参数调优(步数与引导系数平衡、缓存机制)、硬件加速配置(DSP/HTA核心分配、内存池预分配)以及图像质量提升技巧(负面提示词优化、高清修复),显著提升了推理速度(25%)、降低了资源占用,同时保证了图像质量。这些优化方案使边缘设备能更高效地运行生成式AI应用。
2026-01-29 10:21:19
479
原创 在高通跃龙QCS9075 平台上部署 Stable Diffusion v2.1 (1): 从零到本地文生图
本教程详细介绍了在高通跃龙QCS9075/QCS9100边缘设备上本地部署Stable Diffusion 2.1模型的完整流程。内容涵盖:1)通过GitHub脚本或Hugging Face获取预编译模型文件;2)安装匹配版本的QNN SDK;3)配置Python运行环境;4)模型部署与推理实现。教程特别强调版本兼容性检查,并提供了两种模型获取方式,使开发者能够在无云服务环境下实现高效的文生图功能,满足边缘计算场景的低延迟需求。通过逐步指导,帮助开发者在资源受限的边缘设备上运行强大的生成式AI模型。
2026-01-29 10:11:05
863
原创 高通平台Android系统的硬件加密与密钥管理术语大全
本文档系统梳理了高通QCE硬件加密和Android密钥管理相关的核心术语,涵盖加密引擎、接口协议、算法模式、密钥体系、安全标准等14个类别。主要内容包括:QCE/ICE加密引擎工作原理、AF_ALG/qcedev等关键接口、AES-GCM/XTS等加密模式、KeyMint/TEE密钥管理体系、FIPS/CC安全认证标准,以及开发调试相关的错误码和性能指标。文档采用分类编排方式,提供术语全称、功能说明及实用记忆技巧,可作为开发过程中快速查阅的参考手册,帮助开发者准确理解技术概念和规范术语。
2026-01-22 11:18:41
822
原创 高通QCE工程实践:硬件加密加速从入门到调试
本文讲解了高通平台的加密能力全景,讲述高通QCE工程实践。面向需要理解或使用高通平台硬件加密能力的应用开发者与系统工程师。内容基于公开的Linux/Android机制整理,不同SoC和内核版本在细节上会有差异,具体请以平台文档为准。
2026-01-22 10:59:18
1052
原创 高通跃龙QCS9100平台部署AWS Greengrass(2): 组件开发与部署实战
本文介绍了如何在QCS9100设备上创建并部署自定义Greengrass V2组件。主要内容包括:1) 创建组件目录结构和准备运行包;2) 上传组件到S3存储桶并配置访问权限;3) 编写组件Recipe描述文件;4) 在AWS控制台创建和部署组件;5) 验证部署状态和查看运行日志。通过将业务逻辑打包为组件,可以实现边缘设备的自定义功能部署和管理。文章详细说明了从本地开发到云端部署的完整流程,为在Greengrass V2平台上开发边缘应用提供了实用指导。
2026-01-22 09:30:00
1593
原创 高通跃龙QCS9100平台部署AWS Greengrass(1): 环境配置与Greengrass核心安装
本文将高通旗舰移动平台QCS9100与AWS边缘计算服务Greengrass结合,打造本地智能节点。文章详细介绍了在QCS9100开发板上部署Greengrass核心软件的完整流程,包括系统环境准备、AWS CLI配置、Greengrass核心安装与验证等关键步骤。通过这一部署,用户可以在设备端运行AI推理模型,实现低延迟、高隐私保护的应用。文中还提供了云端资源创建结果的详细说明,为后续开发自定义组件奠定基础。
2026-01-22 09:15:00
1747
原创 从 LLaMA-Factory 微调到高通 NPU 部署: Qwen-0.6B 全链路移植指南
本文详细介绍了将微调后的Qwen-0.6B大模型移植到高通骁龙NPU的完整流程。主要内容包括:1)从LLaMA-Factory导出微调模型;2)将safetensors格式转换为PyTorch权重再导出为ONNX;3)针对高通NPU进行关键优化(Opset版本、静态形状、模型简化);4)使用高通QNN工具链将ONNX模型编译为NPU可执行的动态库(.so)和上下文二进制文件(.bin);5)在Android端通过QNN API集成和验证模型。
2026-01-15 11:19:58
1017
1
原创 手把手带你玩转 QAIRT Python API 一站式部署(3): 实现 Android/QNX 一键远程部署
QAIRT Python API 的“杀手锏”功能——远程目标设备执行。它将 ADB/QNX 的底层连接逻辑高度抽象,让你在 Python 环境中就能像调用本地函数一样操作远程设备。
2026-01-15 10:00:00
1551
原创 手把手带你玩转 QAIRT Python API 一站式部署(2): QAIRT 灵活量化策略与性能可视化全攻略
本文深入解析QAIRT Python API的量化与性能优化实战。通过实测数据展示合理量化可实现3-4倍速度提升仅损失1-2%精度。详细介绍三种量化模式:AIMET编码导入、浮点精度指定和校准数据集量化。在编译阶段支持针对特定SoC进行内存和线程微调,并提供完整的Profiling工具链,包括JSON性能报告和可视化分析界面,帮助开发者锁定性能瓶颈。文章为移动端AI模型部署提供了精度与速度平衡的实用解决方案。
2026-01-15 09:45:00
740
原创 手把手带你玩转 QAIRT Python API 一站式部署(1): 告别繁琐 CLI
高通推出的QAIRT Python API简化了移动端AI模型部署流程,将传统繁琐的CLI工具链统一为简洁的Python接口。该工具支持端到端工作流:模型转换与量化(含三种量化模式)、针对特定芯片的编译优化,以及本地/远程执行。特别提供动态校准量化和细粒度硬件配置功能,并内置性能分析工具,可可视化算子耗时和内存占用情况。通过Python化部署流程,QAIRT显著提升了移动端AI模型的开发效率,使开发者能更专注于算法优化而非底层工具链。
2026-01-15 09:30:00
1963
原创 Qualcomm AI Runtime 深度解析(3): QAIRT异构计算调度策略
本文介绍了如何利用骁龙异构计算优化AI应用性能与能效。通过分析CPU、GPU、DSP和NPU四大计算单元的特性差异,提出智能调度策略:NPU适合AI推理(能效比最高),GPU擅长并行计算,DSP处理信号任务高效,CPU负责通用计算。文章提供了硬件检测代码、自动调度流程图和场景化配置表,并给出温度管理、电量自适应等优化方案。实际应用中,可根据任务类型、电量状态和设备温度,动态选择最佳计算单元,在保证性能的同时降低40-60%功耗。
2026-01-08 11:08:26
954
原创 Qualcomm AI Runtime 深度解析(2): 将AI模型转换为骁龙平台专属格式
📌 高通DLBC模型转换摘要 本文详细介绍将ONNX/TFLite模型转换为高通专属DLBC格式的完整流程: DLBC优势:深度优化骁龙硬件,支持CPU/GPU/DSP/NPU异构计算,比通用格式性能提升30%+ 转换步骤: 安装QAIRT工具链并配置环境 基础转换(层融合、内存布局优化) 可选INT8/FP16量化。关键技巧: 使用--fusion-rules实现卷积+BN+ReLU融合 按硬件选择NHWC/NCHW内存布局 校准数据生成。
2026-01-08 10:55:08
811
原创 Qualcomm AI Runtime 深度解析(1): QAIRT基础入门与架构解析
Qualcomm AI Runtime(QAIRT)是高通专为骁龙移动平台打造的AI推理引擎中间件,可显著提升AI模型在骁龙手机上的运行效率。QAIRT通过智能调度CPU、GPU、DSP/NPU等异构计算单元,实现硬件感知优化和能效比优先的推理加速。其分层架构包含应用层、API层、运行时引擎层和硬件抽象层,支持模型转换、图优化和智能任务分配。开发时需配置Android环境,获取QAIRT SDK,并针对骁龙平台特性进行优化。相比通用推理引擎,QAIRT能充分发挥骁龙硬件潜力,是移动端AI应用开发的理想选择。
2026-01-08 10:48:45
942
原创 边缘AI新标杆: 高通跃龙 IQ-9075 EVK开发板深度解析
高通推出工业级边缘AI评估套件翼龙IQ-9075 EVK,具备100 TOPS AI算力、36GB ECC内存和16路4K视频处理能力,支持-40°C至+90°C宽温工作。该平台采用异构计算架构,集成八核CPU、Adreno 663 GPU和专用NPU,可本地运行130亿参数大模型。配备丰富接口(2.5GbE、Wi-Fi 6E、PCIe Gen4等)和Ubuntu/Yocto系统支持,适用于机器人、工业检测等场景。相比Jetson AGX Orin等竞品,IQ-9075在工业可靠性和多路视觉处理方面更具优势
2026-01-08 09:22:44
992
原创 深入浅出高通QMI(6): QMI与Android RIL深度集成解析
本文深入分析Android RIL(Radio Interface Layer)与QMI的集成机制,阐述了Android系统通过RIL-JNI-QMI通路与Modem通信的完整流程。文章首先回顾了标准RIL架构的四层通路(应用层→RILJ→RILC→Vendor RIL→QMI→Modem),详细说明各层职责及关键组件。重点剖析了高通QCRIL作为连接RIL与QMI的关键桥梁,展示了RIL请求到QMI消息的映射关系及转换过程。最后提出了两种集成方案:标准RIL适配(推荐产品化方案)和直接QMI调用优化。
2026-01-07 11:04:18
1030
原创 深入浅出高通QMI(5): QMI核心服务进阶接口速查表
本文是《深入浅出高通QMI》系列配套速查表,汇总了CTL、DMS、NAS、WDS四大核心服务的高级接口与关键参数。CTL服务提供状态查询、权限设置和服务重启功能;DMS服务支持频段配置和固件信息查询;NAS服务实现网络模式锁定和信号强度监测;WDS服务支持多APN并发连接和数据统计。文末附有常见错误码和服务ID速查表,帮助开发者快速定位问题并调用接口。
2025-12-31 16:59:48
1003
原创 深入浅出高通QMI(4): QMI服务深度解析与定制开发
本文深入解析QMI核心服务的高级功能与定制开发流程。首先介绍了QMI服务的生命周期、依赖层级及初始化顺序,重点剖析了CTL、DMS、NAS、WDS等核心服务的进阶功能,如客户端权限控制、射频参数配置、网络模式锁定等。随后详细讲解了基于QMI IDL开发自定义服务的完整流程,包括接口定义、代码生成和服务端实现。通过本文,开发者可掌握QMI深度定制与性能优化的关键技术,满足实际项目中的多样化需求。
2025-12-31 16:53:48
854
原创 高通AI全景解读(2): 手把手在Android设备上部署图像超分模型
本文将作为高通AI实操指南,带领开发者使用高通AI Stack,在Android设备上部署一个流行的图像超分辨率模型,体验终端侧AI的完整开发流程。在搭载高通骁龙芯片的Android手机上,运行一个轻量级图像超分辨率模型(例如,使用ESPCN或FSRCNN),将低分辨率图像实时转换为高分辨率图像。运行应用后,用户可以选择一张模糊的小图,点击“超分”按钮,几乎在瞬间就能看到一张更清晰、细节更丰富的图像在本地生成。等,真正释放骁龙平台的AI潜能,创造下一代智能应用。,充分体现了终端侧AI的。
2025-12-30 14:25:31
864
原创 高通 AI 全景解读(1): 终端侧 AI 的工程必然性与技术路径
摘要 随着AI技术发展,云端算力主导的模式在实时性、隐私、网络和成本方面面临挑战。高通提出**混合AI(Hybrid AI)**解决方案,通过终端与云端协同优化AI部署。 核心观点: 终端优先:实时性高、隐私敏感的任务(如语音唤醒、图像处理)下沉到终端,依赖异构计算(NPU、GPU、CPU协同)实现高效推理。 工程实现:通过工具链(如QNN/SNPE)完成模型量化、算子融合和硬件调度,支持主流框架(PyTorch/TF)无缝转换。 开发者机会:需掌握模型拆分、硬件感知优化及端云任务划分能力,平衡延迟与能耗。
2025-12-30 14:15:04
314
原创 在移动端高效运行Stable Diffusion 2.1:基于QAIRT/HTP 的完整部署实践
本文探讨了在高通QNN/HTP硬件加速器上高效运行Stable Diffusion 2.1的方法,重点面向iQ9系列如QCS9075/QCS9100等边缘设备。通过将模型拆分为文本编码器、U-Net和VAE解码器三段,预编译为QNN Context二进制文件,利用HTP专用加速器实现低功耗推理。相比Windows ARM+DirectML方案,该方案专为边缘设备优化,采用Python调度+HTP执行的混合架构,严格对齐SDK版本,显著提升能效比。
2025-12-25 11:48:49
853
原创 高通跃龙QCS6490平台视频录制与上传(4): 常见问题排查与调试指南
本文总结了高通跃龙QCS6490平台视频系统开发中的常见问题与解决方案。针对QCS6490平台的特殊性,详细介绍了三种开机自启动配置方案,包括修改启动脚本、使用rc.local和创建启动链接。文章提供了完整的调试流程和验证步骤,帮助开发者快速定位和解决系统权限与服务启动相关问题。
2025-12-25 10:17:02
620
原创 高通跃龙QCS6490平台视频录制与上传(3): 视频采集,录制及上传的实现
本文深入探讨了在高通跃龙QCS6490平台上使用GStreamer框架实现IP Camera视频采集、编码、保存及上传AWS S3的完整流程。重点展示了在该平台上完整的RTSP视频录制类实现,涵盖初始化配置、状态管理、错误处理等关键功能模块,通过GStreamer管道实现从RTSP源到MP4文件的转换。
2025-12-25 10:06:59
592
原创 高通跃龙QCS6490平台视频录制与上传(2): RS485接口配置与继电器控制
本文详细介绍了在QCS6490平台上配置RS485接口并通过Modbus协议控制工业继电器的方法。包括:RS485接口特性与QCS6490平台接口配置、继电器选型与硬件连接、系统权限设置、Modbus RTU协议解析,以及C++控制类实现。该方案具有工业级可靠性,适用于恶劣环境下的精准定时控制场景。
2025-12-24 18:39:04
907
原创 高通跃龙QCS6490平台视频录制与上传(1): 系统环境搭建指南
本文介绍了在高通跃龙QCS6490平台Linux系统上搭建视频录制与上传功能的基础环境配置。主要内容包括:系统软件包更新、基础开发工具安装、GStreamer多媒体框架配置、网络通信库安装、Python环境配置(含RS485通信模块)以及Java环境安装。文章提供了环境验证脚本和常见问题解决方案,为后续实现视频采集、编码、存储及云上传功能奠定了基础。该配置适用于工业控制、物联网等需要视频处理的智能视觉系统开发。
2025-12-18 11:16:52
859
原创 高通AI效率神器QAIRT Visualizer(3): 深度解读QHAS报告与子图优化实战
当复杂的QHAS数据与上万层的大模型摆在面前,如何从中快速洞察本质?本篇将带你化身“AI模型诊断专家”,深入解读硬件报告,运用子图功能精准狙击大模型瓶颈,并完成一个从分析到优化的完整实战。
2025-12-17 16:53:21
695
原创 高通AI效率神器QAIRT Visualizer(2): 手把手教你从安装到输出第一个可视化报告
从零开始,完成QAIRT Visualizer安装、验证,并手把手教你通过命令行和Python两种方式,快速生成并解读你的第一份可视化分析报告。
2025-12-17 16:36:05
731
原创 高通AI效率神器QAIRT Visualizer(1): 入门与核心优势介绍
还在为模型在骁龙平台上性能不佳却无从下手而头疼?本文带你深入认识Qualcomm AI Runtime Visualizer,看它如何用可视化“透视”模型在硬件上的运行,成为你性能调优的“火眼金睛”
2025-12-17 16:13:40
498
原创 高通自推测解码(SSD)技术解析(3): 从零训练Forecast模块的完整指南
本文详细介绍了SSD(自推测解码)模型的训练过程。主要内容包括:1)数据准备阶段,通过特殊的数据增强策略和预测点插入算法模拟推理场景;2)采用双重损失函数结构(基础语言建模损失+预测损失)和损失掩码机制进行优化;3)实施渐进式训练策略,分阶段增加预测难度,并动态调整多任务权重;4)模型架构扩展,在基础模型上集成Forecast模块。整个训练过程采用课程学习方式,从简单任务逐步过渡到复杂任务,最终实现高效的自推测解码能力。
2025-12-11 11:27:59
780
原创 高通自推测解码(SSD)技术解析(2): Genie推理引擎集成与预测树机制详解
深入解析了高通自投机解码(SSD)技术在Genie推理引擎中的实际应用。SSD通过两个核心参数(预测嵌入张量和前缀KV缓存)实现高效集成,采用预测树机制构建多步候选路径并动态剪枝。文章详细介绍了SSD-Q1配置示例的关键参数调优策略,包括预测嵌入数量、前缀长度和树深度等参数的权衡设置。
2025-12-11 10:48:22
908
原创 高通自推测解码(SSD)技术解析(1): 单模型加速推理的新方案
在大语言模型(LLM)推理加速领域,传统的推测解码(Speculative Decoding)技术因其需要同时运行目标模型(Target Model)和草稿模型(Draft Model)而带来显著的显存开销与系统复杂度。高通的 自推测解码Self-Speculative Decoding(SSD) 的方案,它摒弃了独立的草稿模型,仅通过在目标模型内部添加极少量可学习参数,即可实现高效的多令牌预测与验证,极大降低了资源消耗。
2025-12-11 10:16:47
754
原创 深入浅出高通QMI(3): 开发环境搭建与高级应用
QMI是AP与Modem间的高效通信协议,针对高通平台深度优化采用二进制TLV格式,相比AT命令更高效、更可靠支持同步/异步通信,适应不同业务场景需求完善的调试工具链。
2025-12-04 12:04:39
744
原创 深入浅出高通QMI(2): 协议核心与消息结构
QMI客户端初始化是一个严谨的过程,任何步骤失败都需要清理资源。客户端初始化是使用QMI服务的前置步骤,核心目标是“获取服务信息→建立客户端连接→注册回调函数”,流程不可逆,任何一步失败都需终止初始化并释放资源。QMI消息由“QMUX包头+QMI包头+TLV参数体”三部分组成,总长度最大为4096字节。所有AP与BP/Modem之间的交互,最终都封装在QMI消息中传递。在上一篇中,我们了解了QMI的基本概念和架构。现在,让我们深入到QMI通信的。在QMI异步通信中,回调函数是接收响应的关键。
2025-12-04 11:31:40
1036
原创 深入浅出高通QMI(1): 初识QMI
QMI(高通消息接口)是高通芯片平台中连接应用处理器(AP)与基带处理器(BP/Modem)的关键IPC协议框架。QMI在Android系统中位于RIL与Modem之间,通过标准化接口实现网络管理、设备信息查询等功能。
2025-12-04 10:41:33
1253
原创 利用Edge Impulse在高通跃龙QCS6490平台上部署ResNet-3D模型进行视频行为检测(2): 模型部署与视频行为检测实战
在上篇中,我们已经完成了ResNet-3D模型的转换与环境搭建。本篇将重点讲解如何在高通跃龙 QCS6490(EB3 Gen2) 上运行模型,并通过HTTP接口或摄像头/视频文件实现实时行为检测。
2025-12-03 19:19:53
413
原创 利用Edge Impulse在高通跃龙QCS6490平台上部署ResNet-3D模型进行视频行为检测(1):环境准备与模型转换
本文介绍如何利用平台,将基于Kinetics-400数据集预训练的ResNet-3D模型转换为可在高通跃龙QCS6490芯片上运行的格式,并在搭载该芯片的EB3 Gen2边缘智能站上进行部署与测试。本篇重点讲解环境搭建、模型下载与转换。
2025-12-03 19:02:55
881
原创 高通携手Arduino(3): Arduino Uno Q开发板实践
Arduino Uno Q开发板为传统Arduino生态系统注入了新的活力,特别是在无线通信和能效方面表现突出。易于上手:兼容传统Arduino编程模式连接性强:内置先进的无线通信模块能效优异:继承高通移动设备的功耗优化技术扩展性好:支持AI推理等高级功能无论是物联网原型开发、工业检测项目还是产品验证,高通Arduino Uno Q都是一个值得尝试的优秀平台。随着高通不断更新其软件开发工具包,我们可以期待更多强大功能的加入。
2025-11-25 18:18:13
386
原创 高通携手Arduino(2): 从 Uno Q 起步,边缘AI平台全面进化
高通与Arduino的合作绝不止于硬件。未来,开发者或许可以在Arduino IDE中,通过熟悉的库函数和接口,直接调用底层的高通AI加速引擎,实现“一键模型部署”,彻底告别复杂的驱动和底层优化。
2025-11-25 18:08:19
1001
Hetcompute image processing example (1).docx
2019-07-31
Hetcompute image processing example (2).docx
2019-07-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅