- 博客(37)
- 资源 (41)
- 收藏
- 关注
原创 Python的else子句7个妙用,原来还能这样用,整挺好!
通过定义自定义异常类,可以在特定条件下触发并捕获更精确的错误信息。在异常处理链中 ,elsepassraise MyCustomError("数据为空")# 处理数据...try:print("捕获到自定义异常:", e)else:print("数据处理成功 ,无异常")当传入空列表时,会触发并捕获。探索Python中else子句的多元化运用,揭示了其在条件控制、异常管理、资源上下文及生成器设计中的深刻影响。从基础到进阶,文章逐一剖析了如何利用else。
2024-06-10 20:47:48 3469
原创 Python函数重载6种实现方式,从此告别手写if-else!
函数重载允许我们定义多个同名函数,这些函数根据传入参数的数量或类型不同执行不同的逻辑。这在静态类型语言中较为常见,有助于提高代码的可读性和灵活性。通过在函数内部检查传入参数的类型或数量 ,然后根据这些条件分支执行不同的代码块。这种方法虽然不如原生重载机制优雅,但在Python中是可行的解决方案。
2024-06-10 20:18:57 4566
原创 Python中猴子补丁是什么,如何使用
接下来 ,我们定义一个新的print函数 ,让它在执行原有功能的基础上,额外输出一行日志信息。# 保存原始print函数 ,避免丢失# 将新的print函数放入sys.modules,覆盖原函数注意:这里直接修改__main__命名空间下的print函数仅为示例,真实场景中应避免直接修改内置函数。探索Python猴子补丁的奥秘,从模块加载机制的深入剖析到实战中的动态函数替换 ,再到类与对象级别的精细操控,揭示了这一技巧的强大与微妙。
2024-06-08 19:07:50 1059
原创 python文件:py,ipynb, pyi, pyc, pyd, pyo都是什么文件?
py文件是 Python 最基本的源代码文件格式,用于存储纯文本形式的 Python 代码。它是开发者编写程序的主要场所,包含函数、类、变量定义以及执行逻辑。Python 解释器直接读取并执行.py文件中的指令。例如 ,创建一个简单的hello.py")探索Python编程的多面性,从基础的.py源代码到交互式的.ipynb笔记,再到高效的.pyi类型提示文件,本文深入解析了Python文件的类型与应用。
2024-06-08 19:03:45 3225 1
原创 Python 元组:不可变序列的奥秘与应用
Python 中的元组(Tuple)是一种有序的、不可变的数据结构,它是序列的一种特殊形式,就像一个固定大小的盒子,一旦放入物品就无法更换或移除。元组可以包含任何类型的数据,如数字、字符串甚至是其他元组。相比列表,元组在很多场景下提供了更高效、安全的选择。
2024-05-03 07:47:49 1512 1
原创 Python列表:全面指南
在Python编程中,列表(List)是最常用的数据结构之一,它是一个有序的集合,可以容纳任意类型的对象,如数字、字符串甚至其他列表。列表的特点是可变性,这意味着你可以添加、删除或修改列表中的元素。这使得列表成为处理动态数据的理想选择。# 示例:创建一个包含不同类型的列表通过本文,我们深入了解了Python列表的各个方面,包括创建、访问、操作、排序、组合拆分、高级操作和性能优化。列表作为Python中最重要的数据结构之一,其灵活性和功能强大性使其在各种编程场景中发挥着至关重要的作用。
2024-05-03 07:46:04 790
原创 深入浅出Python中的访问者模式及其应用场景
在面向对象设计中,访问者模式是一种行为设计模式,它主要用于在不改变现有类结构的前提下,为对象的元素结构增加新的操作。简单来说,访问者模式就像是一位“检查员”,它可以对不同类型的元素进行特定的访问和操作。这种模式将数据结构与作用于结构上的操作解耦合,使得操作集合可以独立变化。Visitor(访问者):定义一个接口,用于声明对每一个元素类的操作方法。ConcreteVisitor(具体访问者):实现了 Visitor 接口,为每个元素类提供了具体的访问操作实现。Element(元素):声明接受访问者的。
2024-05-02 08:11:01 1242 2
原创 Python中的观察者模式及其应用
在Python中实现观察者模式可以帮助我们更好地组织复杂的业务逻辑,尤其是在处理涉及状态变更和多方响应的情况时。通过合理的应用和适当的优化,可以在多种场景下有效地降低模块之间的耦合度,实现系统内部的良好通信和协调工作。然而,在使用过程中也需要警惕过度使用导致的“扇出”问题(即一个对象的变化可能引发大量其他对象的反应),以及由此带来的性能影响和调试难度的增加。因此,在实际项目中需根据实际情况适度使用观察者模式,并结合其他设计模式来优化整体架构。
2024-05-02 08:09:04 135
原创 Python列表:全面指南
在Python编程中,列表(List)是最常用的数据结构之一,它是一个有序的集合,可以容纳任意类型的对象,如数字、字符串甚至其他列表。列表的特点是可变性,这意味着你可以添加、删除或修改列表中的元素。这使得列表成为处理动态数据的理想选择。# 示例:创建一个包含不同类型的列表通过本文,我们深入了解了Python列表的各个方面,包括创建、访问、操作、排序、组合拆分、高级操作和性能优化。列表作为Python中最重要的数据结构之一,其灵活性和功能强大性使其在各种编程场景中发挥着至关重要的作用。
2024-04-29 07:06:22 2238
原创 全面理解Python中的迭代器
迭代是一种重复获取数据集合中元素的过程,一次只获取一个元素,直到遍历完所有元素。在Python中,迭代通常用于遍历序列(如列表、元组)或任何可迭代对象。自定义迭代器允许我们创建自己的数据结构并以迭代方式访问其内容。在Python中,最常见的方式是通过生成器函数来实现。生成器函数是一种特殊的迭代器,使用yield语句暂停和恢复函数的执行。# 使用自定义迭代器print(num)itertools模块包含了许多有用的迭代器函数,如count()cycle()chain()等。例如,count()break。
2024-04-29 07:04:51 5700 2
原创 Python并发编程:揭开多线程与异步编程的神秘面纱
在Python的世界里,多线程犹如魔法师手中的魔杖,通过threading模块我们可以轻松地编织出并发执行的神奇景象。这个模块提供了创建、管理线程的基本结构,允许我们定义线程任务,进而实现任务的并发执行。线程就像一个个独立的工人,在同一个进程的工厂里各司其职,共同推进整体工作的进度。想象一个热闹的餐厅,一位服务员在单一的工作台上接待众多客人。虽然只有一人服务,但服务员并不会因为等待某个客人的菜单确认而闲下来,而是会在等待的同时去询问其他客人的需求,然后高效地来回穿梭于厨房与餐桌之间。
2024-04-28 22:27:13 1316
原创 Python网络游侠:揭开requests库的神秘面纱
网络爬虫,也可称为网页抓取器,是一种自动浏览互联网并收集特定数据的程序。它可以细分为通用爬虫(全网爬取)、聚焦爬虫(针对特定主题或网站)、增量式爬虫(仅抓取更新内容)等不同类型。它们犹如网络世界的探险家,穿越无数链接,挖掘出隐藏在浩瀚网页中的宝贵信息。Python以其简洁明了的语法、强大的标准库以及丰富的第三方库,在数据科学和网络开发领域占据了重要位置。尤其是在数据抓取方面,Python的生态环境为开发者提供了诸如requests、BeautifulSoup、Scrapy等一系列高效易用的工具。
2024-04-28 22:21:33 1007
原创 Python与文件操作:压缩、解压与文件遍历
在Python中,os模块是一个非常重要的内置模块,它提供了丰富的操作系统接口,允许程序员执行诸如创建、删除、移动文件,以及遍历目录结构等底层文件系统操作。:这个函数接受一个路径参数,返回一个包含指定目录下所有文件和子目录名称的列表。例如:import os:这个函数用于递归地访问目录树下的每一个目录及其包含的文件。它以生成器的形式返回三元组,分别表示当前目录路径、子目录名列表和文件名列表。
2024-04-28 22:19:20 2161
原创 Python上下文管理器原理与实践
在上下文管理器内部可以捕获并处理特定类型的异常,甚至改变异常行为。通过在__exit__方法中处理异常,可以确保即使在执行过程中发生了错误,相关资源也会得到恰当的清理,避免了资源泄露的风险。例如,在处理数据库事务时,事务的开始和结束都需要进行适当的控制,以确保数据的一致性。使用上下文管理器,我们可以确保在事务结束时,无论中间的操作是否成功,都能够正确地提交或回滚事务。return self.connection # 返回连接以执行SQL操作。
2024-04-28 19:18:17 871
原创 揭秘Python中的描述符及实战应用
描述符是一个实现了__get__()__set__()和特殊方法的类。这三个方法分别对应于获取属性值、设置属性值和删除属性值的操作。当一个类的属性是描述符实例时,对这个属性的访问将会调用描述符的方法而非直接访问其存储值。
2024-04-28 19:16:52 912
原创 Python虚拟环境使用全方位指南:从零开始轻松实践
Python虚拟环境的使用不仅仅局限于基本的创建、激活和安装依赖,还可以进一步拓展到自动化管理、版本锁定和容器化部署等多个方面。深入理解和运用Python虚拟环境不仅能够帮助我们解决依赖冲突,提高软件质量和开发效率,而且也是遵循良好编程规范的重要组成部分。无论是在个人开发还是团队协作中,虚拟环境都是Python开发者手中的一把利器。关注gzh不灵兔,Python学习不迷路,关注后后台私信,可进wx交流群,进群暗号【人生苦短】~~~
2024-04-28 07:34:59 4063
原创 Python中网络请求中Retry策略实现
网络环境的不稳定性及服务短暂不可达等因素可能导致HTTP请求失败。为了强化Python客户端的韧性和自我恢复能力,实现请求自动重试成为了一种常见的最佳实践。在Python生态系统中,requests库作为处理HTTP请求的标准工具备受青睐,但它自身并未直接提供重试机制,此时,我们需要借助urllib3库中的Retry类来补充这一功能。
2024-04-28 07:33:18 702
原创 深入探索Python内存回收机制:原理与实践
在Python C扩展中,如果您定义了自定义的Python类型,需要正确实现它的内存管理方法。自定义类型通常会定义一个tp_dealloc成员,它是类型对象的析构函数,负责释放对象占用的所有资源。// 释放自定义类型持有的任何资源// 调用基类的析构函数(如果有的话)// ... 其他类型属性 ...// ... 其他类型方法 ...
2024-04-27 21:32:25 1385
原创 深入理Python中的弱引用
首先,我们需要理解强引用和弱引用的基本概念。在Python中,对象有两种引用类型:强引用和弱引用。强引用是最常见的引用方式,当我们有一个变量引用一个对象时,只要该变量存在,对象就不会被垃圾回收,直到所有强引用消失。而弱引用则不同,它不会阻止对象被垃圾回收,只有当没有其他强引用时,弱引用的对象才会被释放。弱引用不同于强引用,它并不阻止对象被垃圾回收。简单来说,如果一个对象只有弱引用,那么即使所有强引用都消失了,这个对象也不会立即被销毁,直到没有任何其他引用存在时,才会被垃圾回收器清理。
2024-04-27 21:30:31 1042 2
原创 PyInstaller打包独立可执行exe
是一款强大的跨平台工具,专用于将应用程序封装成完全独立的可执行文件,从而摆脱对外部环境依赖的束缚,使你的创新成果能在任何目标系统上自由运行。无论用户是否已安装解释器或相关库,都能轻松体验你的作品。一体化可执行文件:能够将应用整合为单一的可执行文件,大大简化了用户的安装与部署流程,彻底省去了预先安装Python环境的环节。全方位跨平台支持:此工具支持在、和等多个主流操作系统上构建可执行文件,确保你的应用程序能满足多元化用户群体的需求。智能依赖处理:具备自动化依赖管理功能,它能深度分析源代码并自动集成所有必需的
2024-04-27 18:47:52 915
原创 探索Python动态属性与反射机制
Python被誉为一种具备卓越灵活性的编程语言,它的众多卖点之一便是对反射与动态属性的支持。所谓反射能力,是指程序在执行期间对对象的属性和方法实施检查、存取以及修改的能力。动态属性则允许程序员在运行时为对象新增、读取及调整属性。正是这些能力,赋予了Python在打造易于配置、可横向扩展且智能的应用程序方面的巨大潜力。通过反射和动态属性,Python程序员获得了巨大的权能,能在运行时访问、修改或为对象新增属性和方法,显著提高编程的智能化和适应性。
2024-04-27 18:45:36 802
原创 深入探索 Python 中的偏函数及其广泛应用
Python中的函数不仅仅是一种实用工具,更是贯穿于各类编程场景的核心构件。无论是在函数式编程、装饰器设计、GUI编程、Web开发、异步任务处理,还是数据预处理和机器学习等领域,偏函数都能助力开发者简化代码结构、增强代码可读性和可维护性,进而提升整体编程效率。通过灵活运用偏函数,我们可以更好地封装和复用代码逻辑,打造出更为优雅、高效的程序。关注不灵兔,Python学习不迷路,私信【_-nfyn-_】,可进wx交流群,进群暗号【人生苦短】~~~
2024-04-27 09:39:58 1392 3
原创 Python内存优化实践:策略、技术与数据结构的高效应用
_slots__作为动态类型语言的Python,在面向对象编程(OOP)方面具有很大的灵活性。例如,下面这段代码初步定义了一个Author类,包含了属性name和age。print(me.job) # 输出: Software Engineer然而,这种灵活性的背面是在内存使用上的效率损失。正是因为Python的每个类实例都会有一个特殊的字典(__dict__)来存储实例变量,而内部基于哈希表的实现使这种字典结构在内存使用上效率偏低。大多数情况下,我们不需要在运行时动态地改变类实例的属性。
2024-04-27 09:23:07 715 2
原创 python实现·数据结构与算法之双向循环链表
双向循环链表定义双向循环链表(Double Cycle Linked List)是双向链表的一种更复杂的变形,头结点的上一节点链接域指向尾结点,而尾结点的下一节点链接域指向头节点。节点示意图表元素域elem用来存放具体的数据。链接域prev用来存放上一个节点的位置(python中的标识)链接域next用来存放下一个节点的位置(python中的标识)双向循环链表示意图双向循环链表的基本操作is_empty() 判断链表是否为空length 链表长度travel() 遍历整个链
2020-06-30 17:14:25 534
原创 python实现·数据结构与算法之双向链表
双向链表定义双向链表(Double Linked List)是一种更复杂的链表,每个节点除了包含元素域,还包含两个链接:一个指向前一个节点,当此节点为第一个节点时,指向空值;另一个指向下一个节点,当此节点为最后一个节点时,指向空值。节点示意图表元素域elem用来存放具体的数据。链接域prev用来存放上一个节点的位置(python中的标识)链接域next用来存放下一个节点的位置(python中的标识)双向链表示意图双向链表的基本操作is_empty() 判断链表是否为空leng
2020-06-29 08:38:44 265
原创 python实现·数据结构与算法之单向循环链表
单向循环链表定义单向循环链表(Single Cycle Linked List)是单链表的一个变形,将链表中最后一个节点的next域不再为None,而是指向链表的头节点。节点示意图单向循环链表示意图单向循环链表的基本操作is_empty() 判断链表是否为空length 链表长度travel() 遍历整个链表,打印元素add(item) 在链表头部添加元素append(item) 在链表尾部添加元素insert(pos, item) 在指定位置插入元素remove(item)
2020-06-28 08:37:57 321
原创 python实现·数据结构与算法之单向链表
单向链表定义单向链表(Single Linked List)也叫单链表,是一种链式存取的数据结构,用一组地址任意的存储单元存放线性表中的数据元素,是链表中最简单的一种形式。链表中的数据是以结点来表示的,每个节点包含两个域,一个元素域(数据元素的映象)和一个链接域,链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。节点示意图单向链表示意图单向链表的基本操作is_empty() 判断链表是否为空length 链表长度travel() 遍历整个链表,打印元素add(ite
2020-06-27 20:04:13 211
原创 python实现·十大排序算法之桶排序(Bucket Sort)
简介桶排序(Bucket Sort),也叫箱排序,其主要思想是:将待排序集合中处于同一个值域的元素存入同一个桶中,也就是根据元素值特性将集合拆分为多个区域,则拆分后形成的多个桶,从值域上看是处于有序状态的。对每个桶中元素进行排序,则所有桶中元素构成的集合是已排序的。桶排序是计数排序的扩展版本,计数排序可以看成每个桶只存储相同元素,而桶排序每个桶存储一定范围的元素。桶排序需要尽量保证元素分散均匀,否则当所有数据集中在同一个桶中时,桶排序失效。算法实现步骤根据待排序集合中最大元素和最小元素的差值范
2020-05-26 08:32:08 850
原创 python实现·十大排序算法之基数排序(Radix Sort)
简介基数排序(Radix Sort)是一种非比较型整数排序算法,是桶排序的扩展。基本思想是:将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。按照低位先排序,分别放入10个队列中,然后采用先进先出的原则进行收集;再按照高位排序,然后再收集;依次类推,直到最高位,最终得到排好序的数列。对于数值偏小的一组序列,其速度是非常快的,时间复杂度达到了线性,而且思想也非常的巧妙。算法实现步骤取得数组中的最大数,并取得位数;对数位较短的数前面补零;分配,先从个位开始,根据位值(0-9)分别放到0
2020-05-25 07:27:24 794
原创 python实现·十大排序算法之计数排序(Counting Sort)
简介计数排序(Counting Sort)不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。它的基本思想是:给定的输入序列中的每一个元素x,确定该序列中值小于等于x元素的个数,然后将x直接存放到最终的排序序列的正确位置上。算法实现步骤根据待排序集合中最大元素和最小元素的差值范围,申请额外空间;遍历待排序集合,将每一个元素出现的次数记录到元素值对应的额外空间内;对额外空间内数据进行计
2020-05-24 07:36:38 730
原创 python实现·十大排序算法之堆排序(Heap Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介堆排序(Heap Sort)是利用堆这种数据结构而设计的一种排序算法,是一种选择排序。堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。堆排序思路为: 将一个无序序列调整为一个堆,就能找出序列中的最大值(或最小值),然后将找出的这个元素与末尾元素交换,这样有序序列元素就增加一个,无序序列元素就减少一个,对新的无序序列重复操作,从而
2020-05-23 08:35:22 299
原创 python实现·十大排序算法之希尔排序(Shell Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介希尔排序(Shell Sort)属于插入排序的一种,也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。其基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下,效率是很高的,因此希尔排序在时间效率比直接插入排序有较大提高。
2020-05-22 07:15:56 314
原创 python实现·十大排序算法之归并排序(Merge Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介归并排序(Merge Sort)是一种非常高效的排序方式,它用了分治的思想,基本排序思想是:先将整个序列两两分开,然后每组中的两个元素排好序。接着就是组与组和合并,只需将两组所有的元素遍历一遍,即可按顺序合并。以此类推,最终所有组合并为一组时,整个数列完成排序。算法实现步骤把长度为n的输入序列分成两个长度为n/2的子序列;对这两个子序列分别采用递归的进行排序;将两个排序好的子序列的元素拿出来,按照顺序合并成一个最终的
2020-05-21 08:12:19 825
原创 python实现·十大排序算法之快速排序(Quick Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介快速排序(Quick Sort)是对冒泡排序的一种改进,其的基本思想:选一基准元素,依次将剩余元素中小于该基准元素的值放置其左侧,大于等于该基准元素的值放置其右侧;然后,取基准元素的前半部分和后半部分分别进行同样的处理;以此类推,直至各子序列剩余一个元素时,即排序完成(类比二叉树的思想)。算法实现步骤首先设定一个分界值(pivot),通过该分界值将数组分成左右两部分。将大于或等于分界值的数据集中到数组右边,小于分界值的
2020-05-20 07:21:47 463
原创 python实现·十大排序算法之插入排序(Insertion Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介插入排序(Insertion Sort)是一种简单直观的排序算法。它的工作原理是:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。算法实现步骤从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后向前扫描;如果该元素(已排序)大于新元素,将该元素移到下一位置;重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;将新元素插入到该位置后;重复步
2020-05-19 07:34:57 790
原创 python 实现·十大排序算法之选择排序(Selection Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介选择排序(Selection Sort)是一种简单直观的排序算法。它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完成。算法实现步骤初始状态:无序区为R[1,⋯ ,n]R\left[ 1,\cdots ,n \right]R[1,⋯,n],有序区为空;第i趟排序(i=1,2,3,⋯ ,
2020-05-18 07:44:24 351
原创 python实现·十大排序算法之冒泡排序(Bubble Sort)
文章目录简介算法实现步骤Python 代码实现动画演示算法分析联系我们简介冒泡排序(Bubble Sort)是经典排序算法之一,属于交换排序的一种,基本的排序思路是:从头开始两两元素进行比较,大的元素就往上冒,这样遍历一轮后,最大的元素就会直接筛选出来。然后再重复上述操作,即可完成第二大元素的冒泡。以此类推,直到所有的元素排序完成。算法实现步骤比较相邻的元素,如果第一个比第二个大,就交换它们两个(确定排序规则:从小到大或从大到小);对每一对相邻元素做同样的工作,从开始第一对到结尾的最后
2020-05-17 11:37:16 1628 4
Beginning ASP.NET 2.0 in C# 2005:From Novice to Professional
2018-07-28
Applied Spatial Data Analysis with R
2018-07-28
A Tester’s Guide to .NET Programming
2018-07-28
Analysis of Phylogenetics and Evolution with R
2018-07-28
ASP.NET MVC Framework Preview
2018-07-28
Beginning Node.js
2018-07-25
Beginning PHP and MySQL 5:From Novice to Professional
2018-07-25
A Primer on Scientific Programming with Python(5th Edition)
2018-07-25
A Primer on Scientific Programming with Python(1th Edition)
2018-07-25
HTML5 Game Development Insights
2018-07-24
C++CLI:The Visual C++ Language for .NET
2018-07-23
Dijet Angular Distributions in Proton-Proton Collisions
2018-07-23
Beginning Android Games
2018-07-23
Beginning C# Object-Oriented Programming
2018-07-20
Numerical Python
2018-01-06
Manning.Python与Tkinter编程
2016-10-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人