Spark提供了5种JOIN机制来执行具体的JOIN操作。该5种JOIN机制如下所示:
Shuffle Hash Join
Broadcast Hash Join
Sort Merge Join
Cartesian Join
Broadcast Nested Loop Join
Shuffle Hash Join
简介
当要JOIN的表数据量比较大时,可以选择Shuffle Hash Join。这样可以将大表进行按照JOIN的key进行重分区,保证每个相同的JOIN key都发送到同一个分区中。
Shuffle Hash Join的基本步骤主要有以下两点:
首先,对于两张参与JOIN的表,分别按照join key进行重分区,该过程会涉及Shuffle,其目的是将相同join key的数据发送到同一个分区,方便分区内进行join。
其次,对于每个Shuffle之后的分区,会将小表的分区数据构建成一个Hash table,然后根据join key与大表的分区数据记录进行匹配。
条件与特点
仅支持等值连接,join key不需要排序
支持除了全外连接(full outer joins)之外的所有join类型
需要对小表构建Hash map,属于内存密集型的操作,如果构建Hash表的一侧数据比较大,可能会造成OOM

本文详细介绍了Spark中的5种JOIN机制:Shuffle Hash Join、Broadcast Hash Join、Sort Merge Join、Cartesian Join以及Broadcast Nested Loop Join,包括各自的适用场景、条件与特点。在等值连接的情况下,Spark会选择Broadcast Hash Join、Sort Merge Join或Shuffle Hash Join,而Broadcast Hash Join能有效提升JOIN效率,但对小表数据量有限制。在非等值连接时,会选择Broadcast Nested Loop Join或Cartesian Join。
最低0.47元/天 解锁文章
324

被折叠的 条评论
为什么被折叠?



