Spark提供了5种JOIN机制来执行具体的JOIN操作。该5种JOIN机制如下所示:
Shuffle Hash Join
Broadcast Hash Join
Sort Merge Join
Cartesian Join
Broadcast Nested Loop Join
Shuffle Hash Join
简介
当要JOIN的表数据量比较大时,可以选择Shuffle Hash Join。这样可以将大表进行按照JOIN的key进行重分区,保证每个相同的JOIN key都发送到同一个分区中。
Shuffle Hash Join的基本步骤主要有以下两点:
首先,对于两张参与JOIN的表,分别按照join key进行重分区,该过程会涉及Shuffle,其目的是将相同join key的数据发送到同一个分区,方便分区内进行join。
其次,对于每个Shuffle之后的分区,会将小表的分区数据构建成一个Hash table,然后根据join key与大表的分区数据记录进行匹配。
条件与特点
仅支持等值连接,join key不需要排序
支持除了全外连接(full outer joins)之外的所有join类型
需要对小表构建Hash map,属于内存密集型的操作,如果构建Hash表的一侧数据比较大,可能会造成OOM