深度学习在自动驾驶中的应用已形成完整的技术体系,涵盖感知、决策、规划与控制等核心环节,以下是具体应用场景与技术实现:
一、环境感知与多模态融合
-
视觉感知
• 目标检测:采用卷积神经网络(CNN)处理摄像头图像,识别车道线、交通标志、行人及车辆(如YOLOv7模型在Tesla Autopilot中实现99.3%的检测精度)。
• 语义分割:通过U-Net模型对激光雷达点云进行三维重建,生成高精度环境地图(Waymo的LiDAR系统可识别5cm级障碍物)。 -
多传感器融合
• 结合摄像头、毫米波雷达和激光雷达数据,使用Transformer架构进行跨模态特征对齐(如Mobileye的EyeQ5芯片实现多源数据融合,降低漏检率40%)。
• 通过雷达信号深度学习分类,提升雨雪天气下的障碍物识别能力(百度Apollo系统在暴雨场景误判率降低至0.5%)。
二、决策与行为预测
-
深度强化学习(DRL)
• 基于DQN算法训练驾驶策略,模拟人类驾驶员在复杂路况下的决策(如NVIDIA的DRIVE Sim平台实现紧急避障成功率98%)。
• 通过模仿学习(Imitation Learning)复现人类驾驶行为,优化变道、超车等场景决策(Waymo的ChauffeurNet模型学习10万小时