
RAG
文章平均质量分 80
普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
落地RAG,选择向量数据库、知识图谱还是关系数据库?
RAG(检索增强生成)技术通过结合检索和生成模型,显著提升了模型的回答准确性和相关性。然而,在实际应用中,选择合适的数据库类型是关键。本文详细解析了三种数据库的特点、适用场景及优缺点:向量数据库适合处理非结构化数据,支持高效相似度检索;知识图谱适合结构化知识的表示和推理,具有较高的可解释性;关系数据库适合处理结构化数据,支持复杂查询和事务处理。文章还通过实际案例展示了不同企业如何选择数据库,并给出了落地RAG的建议,包括明确需求、考虑成本和维护,以及结合多种数据库的优势。原创 2025-05-09 12:11:28 · 654 阅读 · 0 评论 -
落地 RAG:向量数据库、知识图谱还是关系数据库?
在信息爆炸的时代,RAG(Retrieval-Augmented Generation)技术通过结合检索和生成模型,为企业从海量数据中提取有价值信息提供了新途径。然而,企业在落地RAG时需在向量数据库、知识图谱和关系数据库之间做出选择。向量数据库擅长高效检索,尤其在处理高维向量数据时表现出色,但在复杂数据关联和结构化查询方面存在局限。知识图谱在语义理解和关系挖掘方面具有优势,但构建和维护成本较高,且在大规模文本检索中效率较低。关系数据库在处理结构化数据时可靠且一致,但对非结构化数据和语义检索支持不足。选择哪原创 2025-05-09 11:46:24 · 665 阅读 · 0 评论 -
2025企业级RAG技术选型指南:向量库、知识图谱与关系库深度对比
本文探讨了技术选型中的核心矛盾——效率、准确性与成本的三角博弈,并详细分析了向量数据库、知识图谱和关系数据库在不同场景下的应用。通过技术指标对比和实战案例,展示了各技术的优势和局限。文章还提出了混合架构的创新实践,通过分层存储和路由决策引擎实现技术的最优组合。最后,提供了企业选型的决策树指南,并预测了未来AI原生数据库的发展趋势。文章旨在帮助读者在实际项目中做出更明智的技术选择。原创 2025-05-09 11:39:59 · 1049 阅读 · 0 评论 -
几个值得关注的开源RAG技术实践案例,涵盖不同场景和实现方式
本文介绍了多种RAG(检索增强生成)技术的框架、应用场景和部署方案。综合框架类包括RAGFlow、Cognita和AutoRAG,分别适用于企业级知识库构建、高并发场景和快速验证RAG系统性能。垂直场景应用类如KidneyTalk某-open和Graph某RAG,专注于医疗问答和企业知识库。技术探索类如FlexRAG和all-rag-techniques,提供了长文本处理和多模态数据支持的技术亮点。轻量化部署方案如Q某Anything和Lang某Chain-Chatchat,适合快速部署和本地化需求。行业实原创 2025-05-09 11:32:30 · 388 阅读 · 0 评论 -
关系数据库在RAG中的核心劣势分析
关系数据库在处理RAG(检索增强生成)场景时存在显著劣势,主要因其设计初衷是处理结构化数据,而非非结构化文本。关系数据库在存储和检索文本语义信息时效率低下,且缺乏对向量检索的原生支持,导致查询响应时间长、资源消耗大。此外,关系数据库在扩展性、事务一致性与检索效率的平衡上也面临挑战。对于需要处理海量非结构化数据、要求低延迟检索或支持复杂语义推理的项目,建议优先选择向量数据库或知识图谱。关系数据库更适合与RAG系统结合,承担结构化数据存储与验证的角色,而非直接参与核心检索逻辑。原创 2025-05-09 11:26:09 · 275 阅读 · 0 评论