本文是咕泡学院的上课笔记,如果你喜欢欢迎加入
1、在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。
2、HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。
3、为了解决上述问题ConcurrentHashMap应用而生
jdk1.7采用的是分段锁 数组+单向链表
jdk1.8 数组+单向链表+红黑树的结构
1. 取消了segment 分段设计,直接使用Node 数组来保存数据,并且采用Node 数组元素作
为锁来实现每一行数据进行加锁来进一步减少并发冲突的概率
2. 将原本数组+单向链表的数据结构变更为了数组+单向链表+红黑树的结构。为什么要引入
红黑树呢?在正常情况下,key hash 之后如果能够很均匀的分散在数组中,那么table 数
组中的每个队列的长度主要为0 或者1.但是实际情况下,还是会存在一些队列长度过长的
情况。如果还采用单向列表方式,那么查询某个节点的时间复杂度就变为O(n); 因此对于
队列长度超过8 的列表,JDK1.8 采用了红黑树的结构,那么查询的时间复杂度就会降低到
O(logN),可以提升查找的性能;
1.7结构
1.8结构
首先看ConcurrentHashMap的初始化方法
tableSizeFor方法通过位运算保证,初始的大小为2的n次方
https://blog.csdn.net/xia744510124/article/details/89478031(比较详细,不再说明)
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
接下来看put方法
public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for put and putIfAbsent */ final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode());//计算 hash 值 int binCount = 0;//记录链表的长度 for (Node<K,V>[] tab = table;;) {//自旋操作 Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) tab = initTable();//初始化数组
//通过 hash 值对应的数组下标得到第一个节点; 以 volatile 读的方式来读取 table 数 组中的元素, 保证每次拿到的数据都是最新的 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; }
initTable
数组初始化方法,这个方法比较简单,就是初始化一个合适大小的数组
sizeCtl 这个要单独说一下,如果没搞懂这个属性的意义,可能会被搞晕
这个标志是在 Node 数组初始化或者扩容的时候的一个控制位标识,负数代表正在进行初始
化或者扩容操作
-1 代表正在初始化
-N 代表有 N-1 有二个线程正在进行扩容操作,这里不是简单的理解成 n 个线程,sizeCtl 就
是-N,这块后续在讲扩容的时候会说明
0 标识 Node 数组还没有被初始化,正数代表初始化或者下一次扩容的大小
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)//被其他线程抢占了初始化的操作,则直接让出自己的 CPU
时间片
Thread.yield(); // lost initialization race; just spin
//通过 cas 操作,将 sizeCtl 替换为-1,标识当前线程抢占到了初始化资格
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;//默认初始容量为
16
@SuppressWarnings("unchecked")
//初始化数组,长度为 16,或者初始化在构造 ConcurrentHashMap 的时候传入的长度
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;//将这个数组赋值给 table
sc = n - (n >>> 2); //计算下次扩容的大小,实际就是当前容量的 0.75 倍,这里使用了右移来计算,第一次的值是12
}
} finally {
sizeCtl = sc; //设置 sizeCtl 为 sc, 如果默认是 16 的话,那么这个时候 sc=16*0.75=12
}
break;
}
}
return tab;
}
tabAt
该方法获取对象中offset偏移地址对应的对象field的值。实际上这段代码的含义等价于tab[i],
但是为什么不直接使用 tab[i]来计算呢?
getObjectVolatile,一旦看到 volatile 关键字,就表示可见性。因为对 volatile 写操作 happen
before 于 volatile 读操作,因此其他线程对 table 的修改均对 get 读取可见;
虽然 table 数组本身是增加了 volatile 属性,但是“volatile 的数组只针对数组的引用具有
volatile 的语义,而不是它的元素”。 所以如果有其他线程对这个数组的元素进行写操作,那
么当前线程来读的时候不一定能读到最新的值。
出于性能考虑,Doug Lea 直接通过 Unsafe 类来对 table 进行操作。
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int
i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i
<< ASHIFT) + ABASE);
}
在putVal方法执行完成以后,会通过addCount来增加ConcurrentHashMap中的元素个数,
并且还会可能触发扩容操作。这里会有两个非常经典的设计
1. 高并发下的扩容
2. 如何保证 addCount 的数据安全性以及性能
//将当前 ConcurrentHashMap 的元素数量加 1,有可能触发 transfer 操作(扩容)
addCount(1L, binCount);
return null;
}
addCount
在 putVal 最后调用 addCount 的时候,传递了两个参数,分别是 1 和 binCount(链表长度),
看看 addCount 方法里面做了什么操作
x 表示这次需要在表中增加的元素个数,check 参数表示是否需要进行扩容检查,大于等于 0
都需要进行检查
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
判断 counterCells 是否为空,
1. 如果为空,就通过 cas 操作尝试修改 baseCount 变量,对这个变量进行原子累加操
作(做这个操作的意义是:如果在没有竞争的情况下,仍然采用 baseCount 来记录元素个
数)
2. 如果 cas 失败说明存在竞争,这个时候不能再采用 baseCount 来累加,而是通过
CounterCell 来记录
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x))
{
CounterCell a; long v; int m;
boolean uncontended = true;//是否冲突标识,默认为没有冲突
这里有几个判断
1. 计数表为空则直接调用 fullAddCount
2. 从计数表中随机取出一个数组的位置为空,直接调用 fullAddCount
3. 通过 CAS 修改 CounterCell 随机位置的值,如果修改失败说明出现并发情况(这里又
用到了一种巧妙的方法),调用 fullAndCount
Random 在线程并发的时候会有性能问题以及可能会产生相同的随机
数,ThreadLocalRandom.getProbe 可以解决这个问题,并且性能要比 Random 高
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);//执行 fullAddCount 方法
return;
}
if (check <= 1)//链表长度小于等于 1,不需要考虑扩容
return;
s = sumCount();//统计 ConcurrentHashMap 元素个数
}
//….
}
CounterCells 解释
ConcurrentHashMap 是采用 CounterCell 数组来记录元素个数的,像一般的集合记录集合大
小,直接定义一个 size 的成员变量即可,当出现改变的时候只要更新这个变量就行。为什么
ConcurrentHashMap 要用这种形式来处理呢?
问题还是处在并发上,ConcurrentHashMap 是并发集合,如果用一个成员变量来统计元素个
数的话,为了保证并发情况下共享变量的的难全兴,势必会需要通过加锁或者自旋来实现,
如果竞争比较激烈的情况下,size 的设置上会出现比较大的冲突反而影响了性能,所以在
ConcurrentHashMap 采用了分片的方法来记录大小,具体什么意思,我们来分析下
private transient volatile int cellsBusy;// 标识当前 cell 数组是否在初始化或扩容中的
CAS 标志位
/**
* Table of counter cells. When non-null, size is a power of 2.
*/
private transient volatile CounterCell[] counterCells;// counterCells 数组,总数
值的分值分别存在每个 cell 中
@sun.misc.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
//看到这段代码就能够明白了,CounterCell 数组的每个元素,都存储一个元素个数,而实际我们调用
size 方法就是通过这个循环累加来得到的
//又是一个设计精华,大家可以借鉴; 有了这个前提,再会过去看 addCount 这个方法,就容易理解一些
了
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
fullAddCount 源码分析
fullAddCount 主要是用来初始化 CounterCell,来记录元素个数,里面包含扩容,初始化等
操作
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
//获取当前线程的 probe 的值,如果值为 0,则初始化当前线程的 probe 的值,probe 就是随机数
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true; // 由于重新生成了 probe,未冲突标志位设置为 true
}
boolean collide = false; // True if last slot nonempty
for (;;) {//自旋
CounterCell[] as; CounterCell a; int n; long v;
//说明 counterCells 已经被初始化过了,我们先跳过这个代码,先看初始化部分
if ((as = counterCells) != null && (n = as.length) > 0) {
if ((a = as[(n - 1) & h]) == null) {// 通过该值与当前线程 probe 求与,获得
cells 的下标元素,和 hash 表获取索引是一样的
if (cellsBusy == 0) { //cellsBusy=0 表示 counterCells 不在初始化或者扩
容状态下
CounterCell r = new CounterCell(x); //构造一个 CounterCell 的值,
传入元素个数
if (cellsBusy == 0 &&//通过 cas 设置 cellsBusy 标识,防止其他线程来
对 counterCells 并发处理
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
//将初始化的 r 对象的元素个数放在对应下标的位置
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {//恢复标志位
cellsBusy = 0;
}
if (created)//创建成功,退出循环
break;
continue;//说明指定 cells 下标位置的数据不为空,则进行下一次循环
}
}
collide = false;
}
//说明在 addCount 方法中 cas 失败了,并且获取 probe 的值不为空
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; //设置为未冲突标识,进入下一次自旋咕泡学院-做技术人的指路明灯,职场生涯的精神导师
//由于指定下标位置的 cell 值不为空,则直接通过 cas 进行原子累加,如果成功,则直接
退出
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))//
break;
//如果已经有其他线程建立了新的 counterCells 或者 CounterCells 大于 CPU 核心数
(很巧妙,线程的并发数不会超过 cpu 核心数)
else if (counterCells != as || n >= NCPU)
collide = false; //设置当前线程的循环失败不进行扩容
else if (!collide)//恢复 collide 状态,标识下次循环会进行扩容
collide = true;
//进入这个步骤,说明 CounterCell 数组容量不够,线程竞争较大,所以先设置一个标识
表示为正在扩容
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == as) {// Expand table unless stale
//扩容一倍 2 变成 4,这个扩容比较简单
CounterCell[] rs = new CounterCell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;//恢复标识
}
collide = false;
continue;//继续下一次自旋
}
h = ThreadLocalRandom.advanceProbe(h);//更新随机数的值
}
初始化 CounterCells 数组
//cellsBusy=0 表示没有在做初始化,通过 cas 更新 cellsbusy 的值标注当前线程正在做初
始化操作
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2]; //初始化容量为 2
rs[h & 1] = new CounterCell(x);//将 x 也就是元素的个数放在指定的数组
下标位置
counterCells = rs;//赋值给 counterCells
init = true;//设置初始化完成标识
}
} finally {
cellsBusy = 0;//恢复标识
}
if (init)
break;
}
//竞争激烈,其它线程占据 cell 数组,直接累加在 base 变量中
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}
CounterCells 初始化图解
初始化长度为 2 的数组,然后随机得到指定的一个数组下标,将需要新增的值加入到对应下
标位置处
transfer 扩容阶段
判断是否需要扩容,也就是当更新后的键值对总数 baseCount >= 阈值 sizeCtl 时,进行
rehash,这里面会有两个逻辑。
1. 如果当前正在处于扩容阶段,则当前线程会加入并且协助扩容
2. 如果当前没有在扩容,则直接触发扩容操作
if (check >= 0) {//如果 binCount>=0,标识需要检查扩容
Node<K,V>[] tab, nt; int n, sc;
//s 标识集合大小,如果集合大小大于或等于扩容阈值(默认值的 0.75)
//并且 table 不为空并且 table 的长度小于最大容量
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);//这里是生成一个唯一的扩容戳,这个是干嘛用的
呢?
if (sc < 0) {//sc<0,也就是 sizeCtl<0,说明已经有别的线程正在扩容了
//这 5 个条件只要有一个条件为 true,说明当前线程不能帮助进行此次的扩容,
直接跳出循环
//sc >>> RESIZE_STAMP_SHIFT!=rs 表示比较高 RESIZE_STAMP_BITS 位
生成戳和 rs 是否相等,相同
//sc=rs+1 表示扩容结束
//sc==rs+MAX_RESIZERS 表示帮助线程线程已经达到最大值了
//nt=nextTable -> 表示扩容已经结束
//transferIndex<=0 表示所有的 transfer 任务都被领取完了,没有剩余的
hash 桶来给自己自己好这个线程来做 transfer
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))//当前线程
尝试帮助此次扩容,如果成功,则调用 transfer
transfer(tab, nt);
}
// 如果当前没有在扩容,那么 rs 肯定是一个正数,通过 rs<<RESIZE_STAMP_SHIFT 将 sc 设置
为一个负数,+2 表示有一个线程在执行扩容
else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs <<
RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();// 重新计数,判断是否需要开启下一轮扩容
}
}
resizeStamp
这块逻辑要理解起来,也有一点复杂。
resizeStamp 用来生成一个和扩容有关的扩容戳,具体有什么作用呢?我们基于它的实现来
做一个分析
static final int resizeStamp(int n) {
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
}
Integer.numberOfLeadingZeros 这个方法是返回无符号整数 n 最高位非 0 位前面的 0 的个
数
比如 10 的二进制是 0000 0000 0000 0000 0000 0000 0000 1010
那么这个方法返回的值就是 28
根据 resizeStamp 的运算逻辑,我们来推演一下,假如 n=16,那么 resizeStamp(16)=32796
转化为二进制是
[0000 0000 0000 0000 1000 0000 0001 1100]
接着再来看,当第一个线程尝试进行扩容的时候,会执行下面这段代码
U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)
rs 左移 16 位,相当于原本的二进制低位变成了高位 1000 0000 0001 1100 0000 0000 0000
0000
然后再+2 =1000 0000 0001 1100 0000 0000 0000 0000+10=1000 0000 0001 1100 0000 0000
0000 0010
高 16 位代表扩容的标记、低 16 位代表并行扩容的线程数
高 RESIZE_STAMP_BITS 位 低 RESIZE_STAMP_SHIFT 位
扩容标记 并行扩容线程数
➢ 这样来存储有什么好处呢?
1. 首先在 CHM 中是支持并发扩容的,也就是说如果当前的数组需要进行扩容操作,可以
由多个线程来共同负责,这块后续会单独讲
2. 可以保证每次扩容都生成唯一的生成戳,每次新的扩容,都有一个不同的 n,这个生成
戳就是根据 n 来计算出来的一个数字,n 不同,这个数字也不同
➢ 第一个线程尝试扩容的时候,为什么是+2
因为 1 表示初始化,2 表示一个线程在执行扩容,而且对 sizeCtl 的操作都是基于位运算的,
所以不会关心它本身的数值是多少,只关心它在二进制上的数值,而 sc + 1 会在
低 16 位上加 1。
transfer
扩容是 ConcurrentHashMap 的精华之一,扩容操作的核心在于数据的转移,在单线程环境
下数据的转移很简单,无非就是把旧数组中的数据迁移到新的数组。但是这在多线程环境下,
在扩容的时候其他线程也可能正在添加元素,这时又触发了扩容怎么办?可能大家想到的第
一个解决方案是加互斥锁,把转移过程锁住,虽然是可行的解决方案,但是会带来较大的性
能开销。因为互斥锁会导致所有访问临界区的线程陷入到阻塞状态,持有锁的线程耗时越长,
其他竞争线程就会一直被阻塞,导致吞吐量较低。而且还可能导致死锁。
而 ConcurrentHashMap 并没有直接加锁,而是采用 CAS 实现无锁的并发同步策略,最精华
的部分是它可以利用多线程来进行协同扩容
简单来说,它把 Node 数组当作多个线程之间共享的任务队列,然后通过维护一个指针来划
分每个线程锁负责的区间,每个线程通过区间逆向遍历来实现扩容,一个已经迁移完的
bucket 会被替换为一个 ForwardingNode 节点,标记当前 bucket 已经被其他线程迁移完了。
接下来分析一下它的源码实现
1、fwd:这个类是个标识类,用于指向新表用的,其他线程遇到这个类会主动跳过这个类,因
为这个类要么就是扩容迁移正在进行,要么就是已经完成扩容迁移,也就是这个类要保证线
程安全,再进行操作。
2、advance:这个变量是用于提示代码是否进行推进处理,也就是当前桶处理完,处理下一个
桶的标识
3、finishing:这个变量用于提示扩容是否结束用的
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//将 (n>>>3 相当于 n/8) 然后除以 CPU 核心数。如果得到的结果小于 16,那么就使用 16
// 这里的目的是让每个 CPU 处理的桶一样多,避免出现转移任务不均匀的现象,如果桶较少
的话,默认一个 CPU(一个线程)处理 16 个桶,也就是长度为 16 的时候,扩容的时候只会有一
个线程来扩容
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) <
MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//nextTab 未初始化,nextTab 是用来扩容的 node 数组
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
//新建一个 n<<1 原始 table 大小的 nextTab,也就是 32
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;//赋值给 nextTab
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE; //扩容失败,sizeCtl 使用 int 的最大值
return;
}
nextTable = nextTab; //更新成员变量
transferIndex = n;//更新转移下标,表示转移时的下标
}
int nextn = nextTab.length;//新的 tab 的长度
// 创建一个 fwd 节点,表示一个正在被迁移的 Node,并且它的 hash 值为-1(MOVED),也
就是前面我们在讲 putval 方法的时候,会有一个判断 MOVED 的逻辑。它的作用是用来占位,表示
原数组中位置 i 处的节点完成迁移以后,就会在 i 位置设置一个 fwd 来告诉其他线程这个位置已经
处理过了,具体后续还会在讲
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
// 首次推进为 true,如果等于 true,说明需要再次推进一个下标(i--),反之,如果是
false,那么就不能推进下标,需要将当前的下标处理完毕才能继续推进
boolean advance = true;
//判断是否已经扩容完成,完成就 return,退出循环
boolean finishing = false; // to ensure sweep before committing
nextTab
通过 for 自循环处理每个槽位中的链表元素,默认 advace 为真,通过 CAS 设置
transferIndex 属性值,并初始化 i 和 bound 值,i 指当前处理的槽位序号,bound 指需要处理
的槽位边界,先处理槽位 15 的节点;
for (int i = 0, bound = 0;;) {
// 这个循环使用 CAS 不断尝试为当前线程分配任务
// 直到分配成功或任务队列已经被全部分配完毕
// 如果当前线程已经被分配过 bucket 区域
// 那么会通过--i 指向下一个待处理 bucket 然后退出该循环
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
//--i 表示下一个待处理的 bucket,如果它>=bound,表示当前线程已经分配过
bucket 区域
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {//表示所有 bucket 已经
被分配完毕
i = -1;
advance = false;
}
//通过 cas 来修改 TRANSFERINDEX,为当前线程分配任务,处理的节点区间为
(nextBound,nextIndex)->(0,15)
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;//0
i = nextIndex - 1;//15
advance = false;
}
}
//i<0 说明已经遍历完旧的数组,也就是当前线程已经处理完所有负责的 bucket
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {//如果完成了扩容
nextTable = null;//删除成员变量
table = nextTab;//更新 table 数组
sizeCtl = (n << 1) - (n >>> 1);//更新阈值(32*0.75=24)
return;
}
// sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2 (详细介
绍点击这里)
// 然后,每增加一个线程参与迁移就会将 sizeCtl 加 1,
// 这里使用 CAS 操作对 sizeCtl 的低 16 位进行减 1,代表做完了属于自己的任
务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
第一个扩容的线程,执行 transfer 方法之前,会设置 sizeCtl =
(resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2)
后续帮其扩容的线程,执行 transfer 方法之前,会设置 sizeCtl = sizeCtl+1
每一个退出 transfer 的方法的线程,退出之前,会设置 sizeCtl = sizeCtl-1
那么最后一个线程退出时:必然有
sc == (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2),即 (sc - 2)
== resizeStamp(n) << RESIZE_STAMP_SHIFT
// 如果 sc - 2 不等于标识符左移 16 位。如果他们相等了,说明没有线程在
帮助他们扩容了。也就是说,扩容结束了。
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
// 如果相等,扩容结束了,更新 finising 变量
finishing = advance = true;
// 再次循环检查一下整张表
i = n; // recheck before commit
}
}
// 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode ”空节点“
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//表示该位置已经完成了迁移,也就是如果线程 A 已经处理过这个节点,那么线程 B 处理这个节点
时,hash 值一定为 MOVED
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
}
}
扩容过程图解
ConcurrentHashMap 支持并发扩容,实现方式是,把 Node 数组进行拆分,让每个线程处理
自己的区域,假设 table 数组总长度是 64,默认情况下,那么每个线程可以分到 16 个 bucket。
然后每个线程处理的范围,按照倒序来做迁移
通过 for 自循环处理每个槽位中的链表元素,默认 advace 为真,通过 CAS 设置 transferIndex
属性值,并初始化 i 和 bound 值,i 指当前处理的槽位序号,bound 指需要处理的槽位边界,
先处理槽位 31 的节点; (bound,i) =(16,31) 从 31 的位置往前推动。
假设这个时候 ThreadA 在进行 transfer,那么逻辑图表示如下
synchronized (f) {//对数组该节点位置加锁,开始处理数组该位置的迁移工作
if (tabAt(tab, i) == f) {//再做一次校验
Node<K,V> ln, hn;//ln 表示低位, hn 表示高位;接下来这段代码的作用
是把链表拆分成两部分,0 在低位,1 在高位
if (fh >= 0) {//下面部分代码原理点击这里
int runBit = fh & n;
Node<K,V> lastRun = f;
//遍历当前 bucket 的链表,目的是尽量重用 Node 链表尾部的一部分
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {如果最后更新的 runBit 是 0,设置低位节点
ln = lastRun;
hn = null;
}
else {//否则,设置高位节点
hn = lastRun;
ln = null;
}
//构造高位以及低位的链表
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);//将低位的链表放在 i 位置也就是不动
setTabAt(nextTab, i + n, hn);//将高位链表放在 i+n 位置
看,在 putVal 方法中 1018 行
(f = tabAt(tab, i = (n - 1) & hash)) == null
通过(n-1) & hash 来获得在 table 中的数组下标来获取节点数据,【&运算是二进制运算符,1
& 1=1,其他都为 0】
假设我们的 table 长度是 16, 二进制是【0001 0000】,减一以后的二进制是 【0000 1111】
假如某个 key 的 hash 值=9,对应的二进制是【0000 1001】,那么按照(n-1) & hash 的算法
0000 1111 & 0000 1001 =0000 1001 , 运算结果是 9
当我们扩容以后,16 变成了 32,那么(n-1)的二进制是 【0001 1111】
仍然以 hash 值=9 的二进制计算为例
0001 1111 & 0000 1001 =0000 1001 ,运算结果仍然是 9
我们换一个数字,假如某个 key 的 hash 值是 20,对应的二进制是【0001 0100】,仍然按照(n-1) & hash
算法,分别在 16 为长度和 32 位长度下的计算结果
16 位: 0000 1111 & 0001 0100=0000 0100
32 位: 0001 1111 & 0001 0100 =0001 0100
从结果来看,同样一个 hash 值,在扩容前和扩容之后,得到的下标位置是不一样的,这种情况当然是
不允许出现的,所以在扩容的时候就需要考虑,
而使用高低位的迁移方式,就是解决这个问题.
大家可以看到,16 位的结果到 32 位的结果,正好增加了 16.
比如 20 & 15=4 、20 & 31=20 ; 4-20 =16
比如 60 & 15=12 、60 & 31=28; 12-28=16
所以对于高位,直接增加扩容的长度,当下次 hash 获取数组位置的时候,可以直接定位到对应的位置。
这个地方又是一个很巧妙的设计,直接通过高低位分类以后,就使得不需要在每次扩容的时候来重新计
算 hash,极大提升了效率。
扩容结束以后的退出机制
如果线程扩容结束,那么需要退出,就会执行 transfer 方法的如下代码
//i<0 说明已经遍历完旧的数组,也就是当前线程已经处理完所有负责的 bucket
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {//如果完成了扩容
nextTable = null;//删除成员变量
table = nextTab;//更新 table 数组
sizeCtl = (n << 1) - (n >>> 1);//更新阈值(32*0.75=24)
return;
}
// sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
// 然后,每增加一个线程参与迁移就会将 sizeCtl 加 1,
// 这里使用 CAS 操作对 sizeCtl 的低 16 位进行减 1,代表做完了属于自己的任
务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
第一个扩容的线程,执行 transfer 方法之前,会设置 sizeCtl =
(resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2)
后续帮其扩容的线程,执行 transfer 方法之前,会设置 sizeCtl = sizeCtl+1
每一个退出 transfer 的方法的线程,退出之前,会设置 sizeCtl = sizeCtl-1
那么最后一个线程退出时:必然有
sc == (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2),即 (sc - 2)
== resizeStamp(n) << RESIZE_STAMP_SHIFT
// 如果 sc - 2 不等于标识符左移 16 位。如果他们相等了,说明没有线程在
帮助他们扩容了。也就是说,扩容结束了。
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
// 如果相等,扩容结束了,更新 finising 变量
finishing = advance = true;
// 再次循环检查一下整张表
i = n; // recheck before commit
}
}
put 方法第三阶段
如果对应的节点存在,判断这个节点的 hash 是不是等于 MOVED(-1),说明当前节点是
ForwardingNode 节点,
意味着有其他线程正在进行扩容,那么当前现在直接帮助它进行扩容,因此调用 helpTransfer
方法
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
helpTransfer
从名字上来看,代表当前是去协助扩容
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
// 判断此时是否仍然在执行扩容,nextTab=null 的时候说明扩容已经结束了
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);//生成扩容戳
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {//说明扩容还未完成的情况下不断循环来尝试将当前
线程加入到扩容操作中
//下面部分的整个代码表示扩容结束,直接退出循环
//transferIndex<=0 表示所有的 Node 都已经分配了线程
//sc=rs+MAX_RESIZERS 表示扩容线程数达到最大扩容线程数
//sc >>> RESIZE_STAMP_SHIFT !=rs, 如果在同一轮扩容中,那么 sc 无符号
右移比较高位和 rs 的值,那么应该是相等的。如果不相等,说明扩容结束了
//sc==rs+1 表示扩容结束
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;//跳出循环
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {//在低 16 位
上增加扩容线程数
transfer(tab, nextTab);//帮助扩容
break;
}
}
return nextTab;
}
return table;//返回新的数组
}
put 方法第四阶段
这个方法的主要作用是,如果被添加的节点的位置已经存在节点的时候,需要以链表的方式
加入到节点中
如果当前节点已经是一颗红黑树,那么就会按照红黑树的规则将当前节点加入到红黑树中
else { //进入到这个分支,说明 f 是当前 nodes 数组对应位置节点的头节点,并且不为
空
V oldVal = null;
synchronized (f) { //给对应的头结点加锁
if (tabAt(tab, i) == f) {//再次判断对应下标位置是否为 f 节点
if (fh >= 0) { //头结点的 hash 值大于 0,说明是链表
binCount = 1; //用来记录链表的长度
for (Node<K,V> e = f;; ++binCount) {//遍历链表
K ek;
//如果发现相同的 key,则判断是否需要进行值的覆盖
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent) //默认情况下,直接覆盖旧的值
e.val = value;
break;
}
//一直遍历到链表的最末端,直接把新的值加入到链表的最后面
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//如果当前的 f 节点是一颗红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//则调用红黑树的插入方法插入新的值
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val; //同样,如果值已经存在,则直接替换
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
put 方法第四个阶段
判断链表的长度是否已经达到临界值 8. 如果达到了临界值,这个时候会根据当前数组的长度
来决定是扩容还是将链表转化为红黑树。也就是说如果当前数组的长度小于 64,就会先扩容。
否则,会把当前链表转化为红黑树
if (binCount != 0) {//说明上面在做链表操作
//如果链表长度已经达到临界值 8 就需要把链表转换为树结构
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)//如果 val 是被替换的,则返回替换之前的值
return oldVal;
break;
}
treeifyBin
在 putVal 的最后部分,有一个判断,如果链表长度大于 8,那么就会触发扩容或者红黑树的
转化操作。
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY) //tab 的长度是不是小于 64,
如果是,则执行扩容
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {//否则,将
当前链表转化为红黑树结构存储
synchronized (b) {// 将链表转换成红黑树
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
tryPresize
tryPresize 里面部分代码和 addCount 的部分代码类似,看起来会稍微简单一些
private final void tryPresize(int size) {
//对 size 进 行修复 ,主 要目 的是防 止传 入的 值不是 一个 2 次幂的 整数 ,然 后通过
tableSizeFor 来讲入参转化为离该整数最近的 2 次幂
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {//否则,将
当前链表转化为红黑树结构存储
synchronized (b) {// 将链表转换成红黑树
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
tryPresize
tryPresize 里面部分代码和 addCount 的部分代码类似,看起来会稍微简单一些
private final void tryPresize(int size) {
//对 size 进 行修复 ,主 要目 的是防 止传 入的 值不是 一个 2 次幂的 整数 ,然 后通过
tableSizeFor 来讲入参转化为离该整数最近的 2 次幂
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
//下面这段代码和 initTable 是一样的,如果 table 没有初始化,则开始初始化
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2);//0.75
}
} finally {
sizeCtl = sc;
}
}
}
//
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) {//这段代码和 addCount 后部分代码是一样的,做辅助扩
容操作
int rs = resizeStamp(n);
if (sc < 0) {
Node<K,V>[] nt;
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}