聚簇索引
索引和数据存储在一块( 都存储在同一个B*tree 中)。
一般主键索引都是聚餐索引
Mysql中InnoDB引擎的主键索引为聚簇索引,MyISAM存储引擎采用非聚集索引
非聚簇索引
索引数据和存储数据是分离的。
二级索引(辅助索引)
二级索引存储的是记录的主键,而不是数据存储的地址。
以Mysql的InnoDB为例
主键是聚集索引
唯一索引、普通索引、前缀索引等都是二级索引(辅助索引)
示例
下面我们通过一个具体的示例进行演示聚集索引和二级索引
pl_ranking(编程语言排行榜表)
该表包含3个字段,如下:
id:主键
plname:编程语言名称
ranking:排名
id | plname | ranking |
---|---|---|
15 | C | 2 |
16 | Java | 1 |
18 | Php | 6 |
23 | C# | 5 |
26 | C++ | 3 |
29 | Ada | 17 |
50 | Go | 12 |
52 | Lisp | 15 |
… | … | … |
id: 设置主键
plname: 普通索引
聚簇索引(主键索引)
从图中我们可以看到,索引数据和存储数据都是在一颗树上,存在一起的。通过定位索引就直接可以查找到数据。
这棵树是根据主键进行创建的。
如果查找id=16的编程语言,
select id, plname, ranking from pl_ranking where id=16;
则只需要读取3个磁盘块,就可以获取到数据。
二级索引(辅助索引)
从上图中我们发现,该B*tree根据plname列进行构建的,只存储索引数据,plname 和 id 的映射。
比如查找 编程语言为“Java”的数据。
select id, plname, ranking from pl_ranking where plname=’Java’;
首先通过二级索引树中找到 Java 对应的主键id 为 “16”(读取2个磁盘块)。
然后在去主键索引中查找id为“16” 的数据。(读取3个磁盘块)
结论
select id, plname, ranking from pl_ranking where id=16;
根据主键查找只需要查找3个磁盘块
select id, plname, ranking from pl_ranking where plname=’Java’;
根据编程语言名称查询需要读取5个磁盘块
结论一
通过上面的主键索引和非主键索引的例子我们可以得出:
主键索引(聚餐索引)查询效率比非主键索引查询效率更高。如果能使用主键查找的,就尽量使用主键索引进行查找。
结论二
从上面图中我们还可以分析得出以下结论:
主键定义的长度越小,二级索引的大小就越小,这样每个磁盘块存储的索引数据越多,查询效率就越高。