机器学习——逻辑回归 原理真的用心了

逻辑回归作为一种基础的分类模型,在机器学习中占据着不可替代的位置。回归是用曲线拟合数据,逻辑回归并非一种回归运算,而是分类算法。接下来进行参数估计,目的是使用现有样本(已分类)训练得到一些参数θ(有些文章中是w和b),使得θ与x的线性组合z映射到sigmoid函数上,可以使这些训练集样本x出现现有分类结果的概率L(θ)极大化,也就是极大似然函数取最大值(此处也可考虑极大似然函数加一个负号转化成损失函数,使损失函数极小化也可达到同样目的)。通过极大似然函数最大化可以推导出θ的求解公式,根据不同的似然函数可以得到两种θ的求解方法,分别是最优化算法中的随机梯度下降法和全批量梯度下降法。最终得出这条分类线,即为最大程度上区分两种或多种类别的、依赖于参数θ的分类线。最终使用这些θ对测试集进行预测,计算预测精度,观察Logistic模型拟合情况。
(纯原创,有错希望大家指正)

1. Logistic原理

1.1 Sigmoid函数

Sigmoid函数是一个值域为(0,1)的s型曲线,它可以将线性函数的任意值映射到s曲线上,作为预计判为正类别(class1)的概率。我们可以任意设定阈值,假设设定为0.5,则映射到Sigmoid函数上值在(0,0.5)内的被判为class0,在(0.5,1)内被判为class1。函数图像如下:
在这里插入图片描述

1.2 前提假设

仅对于一个样本而言,有:

在这里插入图片描述

一式是用sigmoid函数计算出来的概率,第三个公式为一、二式的整合。

1.3 构造似然函数或损失函数

对于多个独立样本而言,由上述第三个公式构造似然函数:
在这里插入图片描述
其中

在这里插入图片描述

为方便求解将似然函数取对数,得到其对数似然函数:

在这里插入图片描述
求对数似然函数的极大值,或者由其构造逻辑回归的对数交叉熵损失函数,只需在前面加负号即可。
关于损失函数的种类此处插入图示:
在这里插入图片描述

1.4 参数估计

对极大似然函数进行一系列偏导为零求极值:

在这里插入图片描述得到最终θ的参数估计,是对应于全批量梯度下降的公式:
在这里插入图片描述还有一种随机梯度下降公式:
在这里插入图片描述全批量梯度下降每次计算都需用到全部数据,计算复杂但在凸函数时可以得到全局最优解;而随机梯度下降每次只需用到一组数据,计算简单但是得到的是局部最优解。

1.5 进行预测并计算精度

有监督学习的好处在于有正确分类的测试集以供测试,通过测试集测试结果计算训练模型的精度,以期判断模型的优劣。

2. 代码实现

2.1 简单案例

2.1.1 库函数导入

import numpy as np              #基础库
import matplotlib.pyplot as plt #画图库
import seaborn as sns           #画图库
from sklearn.linear_model import LogisticRegression #逻辑回归模型函数

2.1.2 模型训练

数据集分为特征数组与标签数组:

#构造数据集
x_features=np.array([[-1,-2],[-2,-1],[-3,-2],[1,3],[2,1],[3,2]])
y_label=np.array([0,0,0,1,1,1])

#调用逻辑回归模型
a=LogisticRegression()

#用逻辑回归模型拟合构造的数据集
a=a.fit(x_features,y_label)#其拟合方程为y=w0 + w1*x1 + w2*x2

2.1.3 模型参数输出

拟合方程为y=w0 + w1x1 + w2x2,输出模型参数:

#查看其对应模型的w
print('the weight of Logistic Regression:',a.coef_)

#查看其对应模型的w0
print('the intercept(w0) of Logistic Regession:',a.intercept_) #第一遍忘记打二者间的逗号

2.1.4 数据及模型可视化

根据标签类别表示为不同颜色:

#可视化构造的数据样本点
plt.figure()
plt.scatter(x_features[:,0],x_features[:,1],c=y_label,s=50,cmap='viridis') #别的c都是颜色,为什么这里是y_label
plt.xlabel('X')  
plt.ylabel('Y')  #设置X轴标签和Y轴标签
plt.title('Dataset')
plt.show()

在这里插入图片描述

#可视化决策边界
plt.figure()
plt.scatter(x_features[:,0],x_features[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')

nx,ny=200,100
x_min,x_max=plt.xlim()
y_min,y_max=plt.ylim() #设定x,y坐标轴
x_grid,y_grid=np.meshgrid(np.linspace(x_min,x_max,nx),np.linspace(y_min,y_max,ny))   #做(x_min,x_max,nx)与(y_min,y_max,ny)的笛卡尔积,生成网格点坐标矩阵(二维三维都可以)

z_proba=a.predict_proba(np.c_[x_grid.ravel(),y_grid.ravel()]) #predict Probability estimates. 对X的每条样本进行概率估计
z_proba=z_proba[:,1].reshape(x_grid.shape) #考虑正类为1,计算判为1类的概率值
plt.contour(x_grid,y_grid,z_proba,[0.5],linewidths=2.,colors='blue')#0.5 #绘制轮廓线,level的数字确定阈值

<matplotlib.contour.QuadContourSet at 0x2773ab2eb48>

在这里插入图片描述
下面可视化地对新样本进行预测:


plt.figure()
## new point 1
x_features_new1 = np.array([[0, -1]])
plt.scatter(x_features_new1[:,0],x_features_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))
"""
Axes.annotate(s, xy, *args, **kwargs)

    s:注释文本的内容
    xy:被注释的坐标点,二维元组形如(x,y)
    xytext:注释文本的坐标点,也是二维元组,默认与xy相同
    xycoords:被注释点的坐标系属性
    arrowprops:箭头的样式,dict(字典)型数据,如果该属性非空,则会在注释文本和被注释点之间画一个箭头。
    connectionstyle就是描绘箭头的样式的,例如箭头的一个弧度、防止箭头被曲线遮挡之类的
    
"""

## new point 2
x_features_new2 = np.array([[1, 2]])
plt.scatter(x_features_new2[:,0],x_features_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_features[:,0],x_features[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界(画出分界线)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

在这里插入图片描述

2.1.5 模型预测

##在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict=a.predict(x_features_new1)
y_label_new2_predict=a.predict(x_features_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
##由于逻辑回归模型是概率预测模型(前文介绍的p = p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率
y_label_new1_predict_proba=a.predict_proba(x_features_new1)
y_label_new2_predict_proba=a.predict_proba(x_features_new2)
print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

输出结果为:
The New point 1 predict class:
[0]
The New point 2 predict class:
[1]
The New point 1 predict Probability of each class:
[[0.69567724 0.30432276]]
The New point 2 predict Probability of each class:
[[0.11983936 0.88016064]]

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

2.2 基于鸢尾花(iris)数据集的逻辑回归

在实践的最开始,我们首先需要导入一些基础的函数库,包括:

  • numpy(Python进行科学计算的基础软件包)

  • pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具)

  • matplotlib和seaborn绘图。

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

变量如下:

sepal length 花萼长度(cm)
sepal width 花萼宽度(cm)
petal length 花瓣长度(cm)
petal width 花瓣宽度(cm)
target 鸢尾的三个亚属类别,‘setosa’(0), ‘versicolor’(1), ‘virginica’(2)

2.2.1 库函数导入

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

2.2.2 数据读取、载入

利用Pandas把json文件转化为csv文件(解决了以前的一个问题):

##我们利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

2.2.3 数据信息简单查看

##利用.info()查看数据的整体信息
iris_features.info()

在这里插入图片描述

##进行简单的数据查看,我们可以利用.head()头部.tail()尾部
iris_features.head()

在这里插入图片描述

iris_features.tail()

在这里插入图片描述
其对应的类别标签为,其中0,1,2分别代表’setosa’,‘versicolor’,'virginica’三种不同花的类别,共有150个数据。

iris_target

在这里插入图片描述

##利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()

在这里插入图片描述
对于特征列进行统计描述:

iris_features.describe() #从统计描述中我们可以看到不同数值特征的变化范围。

在这里插入图片描述

2.2.4 可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target

特征与标签组合的散点可视化:

sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

在这里插入图片描述
从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。可以看出petal width的区分度还是可以的,其次是petal length。

#箱线图可视化
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5, 
palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述从箱线图我们同样可以得出上面的结论,很明显前两个特征对于三个target的区分度不大,后两个较为优秀。

# 选取其前三个特征绘制三维散点图,颜色表现为三个类别
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

在这里插入图片描述
画个3D网格图吧,按理说它是可以360度旋转的,这里不知道为啥不行。(淦,此处厚码)

2.2.5 利用逻辑回归进行二分类的训练及预测

为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。

from sklearn.model_selection import train_test_split

##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]

##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020)
##从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs') #clf为classification function的简写,分类器
##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train) 

在这里插入图片描述
对参数进行估计:

##查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

在这里插入图片描述
在训练集和测试集上分布利用训练好的模型进行预测:

train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
from sklearn import metrics
##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test) #前面参数是预测值,后面是真实值
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()

在这里插入图片描述在这里插入图片描述通过上图我们可以发现其准确度为1,代表所有的样本都预测正确了。

2.2.6 利用逻辑回归进行三分类的训练及预测

##测试集大小为20%,80%/20%分,与二分类不同,将iris_features_part,iris_target_part替换为iris_features,iris_target
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)
##定义逻辑回归模型,与二分类一样
clf=LogisticRegression(random_state=0,solver='lbfgs')
##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)

在这里插入图片描述

##查看其对应的w,与二分类一样
print('the weight of Logistic Regression:\n',clf.coef_)
##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

在这里插入图片描述

##查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述在这里插入图片描述

3. Sigmoid函数作图及总结

(再磨叽一遍加深印象)当逻辑回归中的线性组合z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值。Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

#对应的图像可以表示如下
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))

plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

在这里插入图片描述

所以,逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数,当z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值。

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的ω。从而得到一个针对于当前数据的特征逻辑回归模型。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

总之,逻辑回归作为一个分类算法,十分简单并且易于实现,计算代价不高、速度很快,但是也常常会发生欠拟合的问题,在分析复杂数据时分类精度可能不高,但对于鸢尾花iris数据,足够了。

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值