写在之前
关于斐波那契数列1 1 2 3 5 8 13 21 ......,求指定位置的值
一道经常遇到的面试题,相信大部分人都知道如何实现
function fibonacci(n){
if(n == 1 || n == 2){
return 1;
}
return fibonacci(n-1) + fibonacci(n-2);
}
console.log(fibonacci(20));
上面就是我面试也给出的答案,看起来确实没问题,也能给出计算正确答案,当面试官问我能不能再优化时,我给出了否定答案(真是汗颜),不过在了解了ES6中尾调用之后,好像确实可以优化一下。
何为尾调用优化 《深入理解ES6》一书中给出如下解释:
ECMAScript 6缩减了严格模式下尾调用栈的大小(非严格模式下不受影响),如果满足一下条件,尾调用不再创建新的栈帧,而是清除并重用当前栈帧::
- 尾调用不访问当前栈帧的变量(也就是说函数不是一个闭包)。
- 在函数内部,尾调用是最后一句。
- 尾调用的结果作为函数的返回值。
基于上面三个条件,给出如下实现方式 :
function fibonacci(n, a=0, b=1){
let ret = a + b;
if(n == 1 || n == 2){
return ret;
}
return fibonacci(n - 1 , b, ret);
}
console.log(fibonacci(20));
或者更简便写法
function fibonacci(n, a=0, b=1){
return n <= 2 ? a + b : fibonacci(n - 1 , b, a+b);
}
两者的区别之处在于return时前者调用结果参与了计算,后者直接返回函数调用结果;
测试两者耗时对比:
从结果看 当n值较小时两者几乎没什么差别,当n值越大,两者的差别就显现出来了。
以上是对尾调用的一些总结,如有不正确之处,还望指出加以改正。