深度学习
文章平均质量分 54
lc_MVP
这个作者很懒,什么都没留下…
展开
-
YOLOv7模型推理和训练自己的数据集
YOLOv7模型推理和训练原创 2022-07-21 20:43:57 · 2178 阅读 · 2 评论 -
output_layers_names = [layersNames[i[0]-1] for i in net.getUnconnectedOutLayers()]报错
如标题,在用opencv调用yolov3的权重文件,获取三个尺度输出层的名称时出现了这个错误。改为:output_layers_names = [layersNames[i-1] for i in net.getUnconnectedOutLayers()]即可完美运行。原创 2022-03-07 22:15:41 · 4937 阅读 · 0 评论 -
Windows10下搭建YOLOX环境以及训练自己数据集
目录:1.必要环境2.YOLOX安装及模型推理3.训练自己数据集及测试1.必要环境我的环境是:Windows10+python3.9+CUDA11.1+CUDNN8.1.1在此环境配置不再多说,网上有很多的教程。本篇主要还是记录YOLOX的使用。(这里安装torch有个小坑,如果起初未安装torch,使用requirements.txt安装,则安装的为cpu版本,而此处我们使用的是gpu版本,注意别踩坑)2.YOLOX安装配置YOLOX的环境2.1 进入github官原创 2021-12-12 18:14:13 · 5930 阅读 · 10 评论 -
yolov5-pytorch模型转onnx模型及默认路径下libstdc++.so.6缺少GLIBCXX_3.4.22的解决方案
主要环境要求:python >= 3.8pytorch = 1.7.0onnx = 1.10.1onnx-tf = 1.9.0此处以转yolov5s.pt模型为例,转换成onnx模型命令如下:python models/export.py --weights yolov5s.pt --img 640 --batch 1 若为自己训练的数据集模型为例,命令可参考如下: python models/export.py --weights runs/train/exp/w原创 2021-10-04 10:25:35 · 442 阅读 · 2 评论 -
YOLOv5训练自己的数据集及用训练模型进行测试
1.训练自己的数据:使用labelimg标注软件对数据集进行标注,标注完成后,每张图像会生成对应的xml标注文件。我们将图像和数据统一放置到源码目录的VOCData文件夹下。其中,jpg文件放置在VOCData/images下,xml放置在VOCData/Annotations下:2.运行 split.py 文件,运行结束后,可以看到VOCData/labels下生成了几个txt文件3.然后运行 txt2yolo_label.py 文件用于将数据集转换到yolo数据集格式,转换后可...原创 2021-07-22 09:47:20 · 3233 阅读 · 1 评论