- 博客(24)
- 收藏
- 关注
原创 ubuntu18.04下qt调用opencv使用yolov5 onnx模型推理
报错信息:14:error:undefined reference to 'cv::dnn:dnn4_v202111220::Net::~Net()'解决办法:需要在pro文件中加入红框的库,即可完美运行。结果展示:
2022-04-24 15:43:35 3589 2
原创 opencv图像操作——轮廓周围绘制矩形
基于RDP算法实现,目的是减少多边形轮廓点数。流程:首先将图像变为二值图像发现轮廓,找到图像轮廓通过相关API在轮廓点上找到最小包含矩形和圆,旋转矩形和椭圆绘制他们代码如下:#include<opencv2/opencv.hpp>#include<iostream>using namespace std;using namespace cv;Mat src, dst, gray_src;int threshold_value = 100;...
2022-03-31 10:50:08 4787
原创 opencv图像操作——凸包
概念:在一个多边形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。检测算法:Graham扫描法正式定义:包含集合S中所有点的最小凸多边形称为凸包。Graham扫描法:首先选择Y方向最低的点作为起始点p0,从p0开始极坐标扫描,依次添加p1...pn(排序顺序是根据极坐标的角度的大小,逆时针方向)对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包,反之如果导致一个右转向(顺时针方向)删除该点从凸包中流程:首先把图像从RGB转为灰度然后在转为二值图.
2022-03-31 10:11:49 3658
原创 opencv图像操作——霍夫变换直线检测
霍夫直线变换:Hough Line Transform用来做直线检测;前提条件-边缘检测已经完成;平面空间到极坐标空间转换;检测直线原理:对于任意一条直线上的所有点来说,变换到极坐标中,从[0,360]空间,可与得到r的大小,属于同一条直线上的点在极坐标空(r,theta)必然在一个点上有最强的信号出现,根据此反算到平面坐标中就可以得到直线上各点的像素坐标。从而得到直线。代码如下:#include<opencv2/opencv.hpp>#include<iost
2022-03-28 09:26:37 4230
原创 opencv图像操作——边缘检测
Canny边缘检测算法流程:高斯模糊——GaussianBlur灰度转换——cvtColor计算梯度——Sobel/Scharr非最大信号抑制高低阈值输出二值图像Canny——高低阈值输出二值图像T1,T1为阈值,凡是高于T2的都保留,凡是小于T1都丢弃,从高于T2的像素出发,凡是大于T1而且相互连接的,都保留。最终得到一个输出二值图像推荐的高低阈值比例为T2 : T1 = 3:1 / 2:1 ,其中T2为高阈值,T1为低阈值代码如下:#include<opencv2
2022-03-28 09:16:18 317
原创 opencv图像操作——基本阈值操作
阈值(threshold):图像分割的标尺。阈值类型:阈值二值化(threshold binary)阈值反二值化(threshold binary Inverted)截断(truncate)阈值取零(threshold to zero)阈值反取零(threshold to zero Inverted)实现代码如下:#include<opencv2/opencv.hpp>#include<iostream>using namespace std;usin
2022-03-25 09:27:46 233 2
原创 opencv图像操作——模糊图像
均值滤波模糊高斯模糊中值滤波模糊高斯双边模糊均值模糊无法克服边缘像素信息缺失缺陷。原因是均值滤波是基于平均权重的;高斯模糊部分克服了该缺陷,但是无法完全避免,因为没有考虑像素值的不同;中值滤波对椒盐噪声有很好的抑制作用;高斯双边模糊是边缘保留的滤波方法,避免了边缘信息的丢失,保留了图像轮廓不变。具体代码实现:#include <opencv2/opencv.hpp>#include <iostream>using namespace std;u
2022-03-23 10:12:57 445
原创 opencv图像操作——打开图像获得灰度图的反差图
本机环境为vs2017+opencv3.4.1。首先需要在vs中配置opencv,右击项目,点击属性,在VC++目录中的包含目录和库目录中添加如下信息:包含目录中添加:(此处根据自己电脑中opencv的路径进行添加)D:\opencv\build\include\opencv2D:\opencv\build\include\opencvD:\opencv\build\include库目录中添加:(此处根据自己电脑中opencv的路径进行添加)D:\opencv\build\.
2022-03-21 10:33:39 3926
原创 output_layers_names = [layersNames[i[0]-1] for i in net.getUnconnectedOutLayers()]报错
如标题,在用opencv调用yolov3的权重文件,获取三个尺度输出层的名称时出现了这个错误。改为:output_layers_names = [layersNames[i-1] for i in net.getUnconnectedOutLayers()]即可完美运行。
2022-03-07 22:15:41 4931
原创 Windows10下搭建YOLOX环境以及训练自己数据集
目录:1.必要环境2.YOLOX安装及模型推理3.训练自己数据集及测试1.必要环境我的环境是:Windows10+python3.9+CUDA11.1+CUDNN8.1.1在此环境配置不再多说,网上有很多的教程。本篇主要还是记录YOLOX的使用。(这里安装torch有个小坑,如果起初未安装torch,使用requirements.txt安装,则安装的为cpu版本,而此处我们使用的是gpu版本,注意别踩坑)2.YOLOX安装配置YOLOX的环境2.1 进入github官
2021-12-12 18:14:13 5916 10
原创 c++调用python
最近的项目涉及到用c++调取python文件,就此写下一篇文章记录自己的操作,供以后参考学习。环境配置:python3.6.4+vs2017首先需要将python的头文件等一系列包到入到VS中,需要进行配置VS,配置方法如下:右键工程项目点击属性,VC++目录---包含目录----(选择python安装目录下的libs文件和include文件,此处用的是anaconda环境,也同理)...
2021-11-19 20:45:47 2092 1
原创 yolov5-pytorch模型转onnx模型及默认路径下libstdc++.so.6缺少GLIBCXX_3.4.22的解决方案
主要环境要求:python >= 3.8pytorch = 1.7.0onnx = 1.10.1onnx-tf = 1.9.0此处以转yolov5s.pt模型为例,转换成onnx模型命令如下:python models/export.py --weights yolov5s.pt --img 640 --batch 1 若为自己训练的数据集模型为例,命令可参考如下: python models/export.py --weights runs/train/exp/w
2021-10-04 10:25:35 440 2
原创 Pyqt5页面间相互跳转
最近在为yolov5识别制作界面,因为用qt做的界面目前我还无法调用yolov5,因此采用pyqt5来是做界面,方便调用。本方法引入了第三个py文件来实现页面间跳转。首先将要进行跳转的界面都导入到创建的第三个文件中(run.py)from main import Ui_MainWindow as Main_uifrom pic import Ui_dialog as Pic_ui 其次# 主窗口class MainWindow(QtWidgets.QMainWind...
2021-08-05 11:19:30 6787 5
原创 YOLOv5训练自己的数据集及用训练模型进行测试
1.训练自己的数据:使用labelimg标注软件对数据集进行标注,标注完成后,每张图像会生成对应的xml标注文件。我们将图像和数据统一放置到源码目录的VOCData文件夹下。其中,jpg文件放置在VOCData/images下,xml放置在VOCData/Annotations下:2.运行 split.py 文件,运行结束后,可以看到VOCData/labels下生成了几个txt文件3.然后运行 txt2yolo_label.py 文件用于将数据集转换到yolo数据集格式,转换后可...
2021-07-22 09:47:20 3226 1
原创 基于逻辑回归的癌症分类预测-良/恶性乳腺癌肿瘤预测
流程分析:获取数据 数据处理模块(处理缺失值) 数据集划分 特征工程(标准化) 逻辑回归
2021-06-11 16:03:01 2571 1
原创 用KNN算法对鸢尾花进行分类,添加网格搜索交叉验证
何为网格搜索:网格搜索是一种调参手段,穷举搜索,在所有候选的参数中进行遍历选择,通过在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。...
2021-06-01 09:29:08 836
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人