列主元消去法和矩阵三角分解法求解线性方程组

列主元消去法

  1. 构建增广矩阵: 将线性方程组写成矩阵形式 𝐴𝑋=𝐵,并将系数矩阵 𝐴与常数向量 𝐵组成增广矩阵 [𝐴∣𝐵]。
  2. 选择主元: 对于当前列,从当前行到最后一行,选择绝对值最大的元素作为主元,以减少数值误差。如果主元在当前行,直接使用;否则交换当前行与主元所在行。
  3. 消去: 使用主元所在行对其以下的所有行进行消去操作,使得当前列在主元以下的所有元素都变为零。这是通过将主元所在行乘以某个系数再加到目标行上来实现的。
  4. 重复步骤2和3: 对于剩余的子矩阵(从当前行的下一行和下一列开始),重复步骤2和3,直到处理完所有行或列。
  5. 回代求解: 经过前向消去步骤后,增广矩阵已经变为上三角矩阵形式。接下来,从最后一行开始,逐行回代求解,得到未知数的值。

让我们举个栗子O(∩_∩)O

eg:用列主元消元法求解以下线性方程组

请添加图片描述

矩阵三角分解法

核心:通过将系数矩阵分解为上下三角矩阵的乘积来简化求解过程

step1:将线性方程组𝐴𝑋=𝐵中的系数矩阵A分解为𝐴=𝐿𝑈,其中,L是单位下三角矩阵(对角线元素为1的下三角矩阵),U是上三角矩阵。

step2:分解后,𝐴𝑋=𝐵等价于

{ L y = b U x = y \begin{cases}Ly=b\\Ux=y\end{cases} {Ly=bUx=y

step3:通过Ly=b解得y=y*,然后将y=y*代入Ux=y解得x。

补充:
矩阵的LU分解定理:如果系数矩阵A的顺序主子式Di≠0(i=1,2,…,n),则A可分解为一个单位下三角矩阵L和上三角矩阵U的乘积,且这种分解是唯一的。

让我们举个栗子O(∩_∩)O

eg:用矩阵三角分解法求解以下线性方程组
请添加图片描述

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本资源涵盖多元方程组、非线性方程和常微分方程的软件组合,介绍如下: 线性方程组的数值线性方程组亦即多元一次方程组。在自然科学与工程技术中,很多问题的决常常归结为线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去求解线性方程组,是一个非常重要的问题。线性方程组分直接({是指在没有舍入误差的假设下,经过有限步运算即可求得方程组的精确的方。}和迭代({是用某种极限过程去逐步逼近线性方程组精确的方,即是从一个初始向量x0出发,按照一定的迭代格式产生一个向量序列xk,使其收敛到方程组A*x=b的}。该部分就是针对线性方程组求解而设计的,内容包括:线性方程组的直接:Gauss消去、Gauss列主元消去法、Gauss全主元消去列主元消去法应用『列主元求逆矩阵、列主元求行列式、矩阵三角分解』、LU分解、平方根、改进的平方根、追赶(三对角)、列主元三角分解线性方程组的迭代:雅可比迭代、高斯-塞德尔迭代、逐次超松驰迭代;迭代的收敛性『正定矩阵判断、向量范数、矩阵范数、严格对角站优矩阵判断』。 非线性方程的数值: 在科学研究与工程技术中常会遇到求解非线性方程f(x)=0的问题。而方程f(x)是多项式或超越函数又分为代数方程或超越方程。对于不高于四次的代数方程已有求根公式,而高于四次的代数方程则无精确的求根公式,至于超越方程就更无求其精确了。因此,如何求得满足一定精度要求的方程的近似根也就成为了广大科技工作者迫切需要决的问题。该部分就是针对这一问题而设计的,内容包括:二分、迭代、迭代加速、埃特金加速、牛顿切线、弦截。 常微分方程的数值: 常微分方程的求解问题在实践中经常遇到,但我们只知道一些特殊类型的常微分方程的。在科学和工程问题中遇到的常微分方程的往往很复杂,在许多问题中,并不需要方程的表达式,而仅仅需要获得在若干点的就算即可。因此,研究常微分方程的的数值就很有必要。该部分就是针对这些而设计的,内容包括:欧拉(Euler)方、龙格库塔(Runge-Kutta)方、线性多步方
实验一 列主元消去法 【实验内容】 1. 理高斯顺序消去; 2. 理主元高斯消去求解精度上的优点; 3. 完成列主元消去法的程序; 4. 会用系统内置命令求解有唯一线性方程组; 【试验方与步骤】 一 、 回答下面的问题 1. 什么是线性方程组直接和迭代,各自的特点和使用问题类型是什么? 2. LU 分解是直接还是迭代, L 、 U 矩阵的特点是什么,应用在哪些问题 中,请举例说明。 3. 给出一个舍入误差严重影响计算结果精度的例子,试着能否从多个角度说明产 生该问题的原因。 4. 迭代的收敛性有什么意义,收敛条件用什么判定? 5. 给出例子,并说 明迭代收敛的速度。 二 、 完成下列计算,写出代码 1. 用 crame 则、用 LU 分解函数、逆矩阵函数分别完成 P35 例 3.2.1 2. 编写列主元消去法程序,完成 P35 例 3.2.1 和习题 3 第 2 题 3. 用雅克比、高斯 塞德尔和 SOR 迭代完成习题 3 第 13 题,进行收敛速度的比较 分析 第 2 页 共 13 页 【实验结果】 一、第一大题 1.线性方程组 2.LU 分解 1. LU 分解属于直接 2. L 矩阵特点:一个对角线上的元素全为1 的下三角矩阵(即单位下三角矩阵)。 3. U 矩阵特点:上三角矩阵 4. 应用:LU 分解主要应用在数值分析中,用来线性方程、求反矩阵或计算行列式 直接 迭代 定义 经过有限步算数运算,可求得方程组 的精确的方 用某种极限过程逐步逼近线性 方程组精确的方 特点 运算步骤有限、可得精确 极限逼近思想 适用问 题类型 计算过程中没有舍入误差 向量值序列收敛于向量* x 即 *) ( limx x k k = → 举例    − = + = 3 20 26 5 2 8 x y x y    = − = = = = −    − = + = * 1 * 2 53 106 2, 1 3 20 26 50 20 80 y x x x y x y x y 即有精确 ,所以 两式相加,得    − = + = 3 20 26 5 2 8 x y x y , 0,1,2,... 0.15 1.3 0.4 1.6 ( 1) ( ) ( 1) ( ) =     = − = − + + + k y x x y k k k k 改写为迭代公式 其结果不断逼近精确 然后不断迭代, 取 0,得 1.6, -1.3, (0) (0) (1) (1) x = y = x = y = 第 3 页 共 13 页 3.舍入误差严重影响计算结果精度的例子 建立 dx的递推公式 x x I n n  + = 1 0 5 (教材第二页) 1:      − = − = − 1 0 5 1 5 ln 6 ln n In n I I 2: 由0  In  In − 1,得5In − 1  In +5In − 1  6In − 1      = − +    =  +    + =    − − − n I I I I n I n n I I n n n n n 5 1 5 1 0.0087301587 0.0087301587 2 1 ) 5 21 1 6 21 1 ( 5 1 6 1 0 1 5 1 20 20 将 1 带入上式,得 1 由于计算机只能存储有限位小数,所以在1 中,随着n 的增大,其误差就会越来 越大,最后很大程度的偏向精确;但是在2 中尽管20 I 取得比较粗略,但是随着n 的增大,其误差随传播逐步缩小,所以其最后计算得到的结果是可靠的。 4.迭代的收敛性 迭代 的收敛性 意义 无线逼近精确,便于在计算机上实现编程 收敛条件的 判定 向量值序列收敛于向量x * 即 * ( ) limx x k k = → 第 4 页 共 13 页 5.举例说明迭代收敛的速度 分别用雅可比迭代(J)、高斯—塞德尔迭代(G-S)、超松弛迭代(SOR)计算方组 =            − − − − 0 1 4 1 4 1 4 1 0           3 2 1 x x x =   10 8 10 雅可比迭代 高斯—塞德尔迭代 次 数 X1 X2 X3 误差 次数 X1 X2 X3 误差 1 2.5000 2.0000 2.5000 2.1594954 1 2.5000 2.6250 3.1563 1.4570586 2 3.0000 3.2500 3.0000

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值