[支持向量机SVM] 西瓜书+个人理解 【2.KKT条件】

我们上一节得到了SVM的基本型:
在这里插入图片描述
我们通过观察可以发现svm的基本型是一个有约束的优化问题。
有约束优化问题可分为两种:等式约束不等式约束。如果我们可用g(x)=0表示等式约束,g(x)≤0来表示不等式约束。设原目标优化函数为f(x),我们分别来看一下这两种情况:

  1. 等式约束,最优解x一定满足,g(x)=0,且原函数在最优解的梯度▽f(x*)向量必与g(x)=0在这点的的切线方向垂直。而一个函数的梯度向量必然与其等值线垂直,我们可以把g(x) = 0当做g(x)的一条等值线,所以g(x)在x这一点的梯度▽g(x)向量与▽f(x*)在同一条直线上,即▽g(x*) + λ▽f(x*) = 0(g(x) = 0)。
    通常对于等式约束下的优化问题我们使用拉格朗日乘子法,我们构造拉格朗日函数L(x,λ) = f(x) + λg(x),然后分别对x,λ求偏导,另其等于0得到:①▽g(x*) + λ▽f(x*) = 0,②g(x) = 0。

  2. 不等式约束,也就是g(x)≤0为约束条件,最优解满足g(x*)≤0。可分为两种情况:
    Ⅰ. 最优解在g(x)≤0区域的边缘上,也就是最优解x满足g(x)=0,此时与等式约束 相同。此时g(x)的梯度方向与f(x)的梯度方向相反,也就是式子▽g(x*) + λ▽f(x*) = 0中λ>0。
    Ⅱ. 最优解在g(x)≤0区域内部,那么不等式约束g(x)≤0并没有起到作用,那么对L(x,λ)的最优化与直接对f(x)的最优化没有差别,也就是λ=0。
    对于上述ⅠⅡ两种情况我们可以总结出三个式子:
    在这里插入图片描述
    此三个条件我们称之为Karush-Kuhn-Tucker条件,简称KKT条件。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值