之前介绍的MMEM存在着label bias问题,因此Lafferty et al. [1] 提出了CRF (Conditional Random Field). BTW:比较有意思的是,这篇文章的二作与三作同时也是MEMM的作者。
1. 前言
本节将遵从tutorial [2] 的论文结构,从概率模型(Probabilistic Models)与图表示(Graphical Representation)两个方面引出CRF。
概率模型
Naïve Bayes(NB)是分类问题中的生成模型(generative model),以联合概率建模,运用贝叶斯定理求解后验概率。NB假定输入xx的特征向量条件独立(conditional independence),即
HMM是用于对序列数据XX做标注YY的生成模型,用马尔可夫链(Markov chain)对联合概率建模:
然后,通过Viterbi算法求解的最大值。LR (Logistic Regression)模型是分类问题中的判别模型(discriminative model),直接用logistic函数建模条件概率。实际上,logistic函数是softmax的特殊形式(证明参看ufldl教程),并且LR等价于最大熵模型(这里给出了一个简要的证明),完全可以写成最大熵的形式:
其中,为归一化因子,ww为模型的参数,为特征函数(feature function)——描述(x,y)(x,y)的某一事实。
CRF便是为了解决标注问题的判别模型,于是就有了下面这幅张图(出自 [3]):
图表示
概率模型可以用图表示变量的相关(依赖)关系,所以概率模型常被称为概率图模型(probabilistic graphical model, PGM)。PGM对应的图有两种表示形式:independency graph, factor graph. independency graph直接描述了变量的条件独立,而factor graph则是通过因子分解( factorization)的方式暗含变量的条件独立。比如,NB与HMM所对应的两种图表示如下(图出自[2]):
可以看出,NB与HMM所对应的independency graph为有向图,图所表示的联合概率计算如下:
其中,为图中一个顶点,其parent节点为。根据上述公式,则上图中NB模型的联合概率:
有别于NB模型,最大熵则是从全局的角度来建模的,“保留尽可能多的不确定性,在没有更多的信息时,不擅自做假设”;特征函数则可看作是人为赋给模型的信息,表示特征xx与yy的某种相关性。有向图无法表示这种相关性,则采用无向图表示最大熵模型:
最大熵模型与马尔可夫随机场(Markov Random Field, MRF)所对应factor graph都满足这样的因子分解:
其中,为图的团(即连通子图),为势函数( potential function)。在最大熵模型中,势函数便为的形式了。
2. CRF
前面提到过,CRF(更准确地说是Linear-chain CRF)是最大熵模型的sequence扩展、HMM的conditional求解。CRF假设标注序列YY在给定观察序列XX的条件下,YY构成的图为一个MRF,即可表示成图:
根据式子(4),则可推导出条件概率:
同最大熵模型一样,因子亦可以写成特征函数的exp形式:
特征函数之所以定义成而非,是因为Linear-chain CRF对随机场做了Markov假设。那么,CRF建模的式子可改写为
模型建模P(Y|X)P(Y|X), 不同于CRF的是其采用有向图模型,只考虑xjxj对yjyj的影响,而没有把xx作为整体来考虑,导致的是本地归一化:
而CRF做的则是全局的归一化,避免了label bias的问题。
3. 开源实现
Genius是一个基于CRF的开源中文分词工具,采用了Wapiti做训练与序列标注。
import genius
text = "深夜的穆赫兰道发生一桩车祸,女子丽塔在车祸中失忆了"
seg_list = genius.seg_text(text)
print('/'.join([w.text for w in seg_list]))
# 深夜/的/穆赫兰道/发生/一/桩/车祸/,/女子/丽塔/在/车祸/中/失忆/了 [CRF]
# 深夜/的/穆赫/兰/道/发生/一/桩/车祸/,/女子/丽塔/在/车祸/中/失忆/了 [2-HMM]
# 深夜/的/穆赫兰道/发生/一桩/车祸/,/女子丽塔/在/车祸/中/失忆/了 [HMM]
可以看出,CRF在处理未登录词比HMM的效果是要好的。当然,你可以用CRF++自己撸一个中文分词器。正好,52nlp的有一篇教程教你如何撸,用的是bakeoff2005 的训练语料 msr_training.utf8
。
Footnote: CRF原论文 [1] 与李航老师的《统计学习方法》关于CRF的推导引出,显得比较突兀。相反,tutorial [2] 将NB、HMM、maxent (LR)与CRF串联在一起,从Probabilistic Models、Graphical Representation的角度论述,非常容易理解——CRF是如何在考虑YY的相关性时对条件概率P(Y|X)P(Y|X)建模的;为一篇不得不读的经典的CRF tutorial。
4. 参考资料
[1] Lafferty, John, Andrew McCallum, and Fernando Pereira. "Conditional random fields: Probabilistic models for segmenting and labeling sequence data." Proceedings of the eighteenth international conference on machine learning, ICML. Vol. 1. 2001.
[2] Klinger, Roman, and Katrin Tomanek. Classical probabilistic models and conditional random fields. TU, Algorithm Engineering, 2007.
[3] Sutton, Charles, and Andrew McCallum. "An Introduction to Conditional Random Fields." Machine Learning 4.4 (2011): 267-373.
[4] shinchen2, 统计模型之间的比较. (为转载链接)
[5] KevinXU, 如何理解马尔可夫随机场里因子的表达?
作者:Treant