Py里面浮点数精度的问题--在numpy中

引言,今年是py加入全国计算机二级大礼包的第一年,看了几道题,比如:

0.1+0.1==0.2  返回True

0.1+0.2==0.3返回False

都是0 1 二进制惹的祸,真是一点不省油。。。。弄好久   累

对于十进制,它只能表示以进制数的质因子为分母的分数。10 的质因子有 2 和 5。比如1/2、1/4、1/5、1/8和 1/10 都可以精确表示,因为这些分母只使用了10的质因子。相反,1/3、1/6 和 1/7 都是循环小数,因为它们的分母使用了质因子 3 或者 7。二进制下(进制数为2),只有一个质因子,即2。因此你只能精确表示分母质因子是2的分数。二进制中,1/2、1/4 和 1/8 都可以被精确表示。但是,1/5 或者 1/10 就变成了循环小数。所以,在十进制中能够精确表示的 0.1 与 0.2(1/10 与 1/5),到了计算机所使用的二进制数值系统中,就变成了循环小数。当你对这些循环小数进行数学运算时,并将二进制数据转换成人类可读的十进制数据时,会 对小数尾部进行截断处理。

不同语言运行0.1+0.2 可以见0.1+0.2在各种语言中的结果

回归正题,博主在numpy中求一个整数矩阵A 的逆矩阵 结果A-1是float型,  A点积A-1的结果也是浮点型,并不是好看的对角为1的矩阵

在此可以在初始设置

numpy.set_printoptions(suppress=True)
%设置suppress是不使用科学计数
%括号里也可以是precision=位数,小数的位数

例子

import numpy as np
from numpy.linalg import inv,qr
a=np.array([[0,1,2],[1,1,4],[2,-1,3]])%线性代数书上一个例子

inv(a)%求逆矩阵
Out[26]: 
array([[-7.,  5., -2.],
       [-5.,  4., -2.],
       [ 3., -2.,  1.]])
np.dot(a,inv(a))
Out[28]: 
array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [0.00000000e+00, 1.00000000e+00, 4.44089210e-16],
       [8.88178420e-16, 2.22044605e-16, 1.00000000e+00]])
%本应该是对角1矩阵的


np.set_printoptions(suppress=True)
np.dot(a,inv(a))


Out[32]: 
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
%现在就和py数据分析第二版里面的显示一样了

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值