引言,今年是py加入全国计算机二级大礼包的第一年,看了几道题,比如:
0.1+0.1==0.2 返回True
0.1+0.2==0.3返回False
都是0 1 二进制惹的祸,真是一点不省油。。。。弄好久 累
对于十进制,它只能表示以进制数的质因子为分母的分数。10 的质因子有 2 和 5。比如1/2、1/4、1/5、1/8和 1/10 都可以精确表示,因为这些分母只使用了10的质因子。相反,1/3、1/6 和 1/7 都是循环小数,因为它们的分母使用了质因子 3 或者 7。二进制下(进制数为2),只有一个质因子,即2。因此你只能精确表示分母质因子是2的分数。二进制中,1/2、1/4 和 1/8 都可以被精确表示。但是,1/5 或者 1/10 就变成了循环小数。所以,在十进制中能够精确表示的 0.1 与 0.2(1/10 与 1/5),到了计算机所使用的二进制数值系统中,就变成了循环小数。当你对这些循环小数进行数学运算时,并将二进制数据转换成人类可读的十进制数据时,会 对小数尾部进行截断处理。
不同语言运行0.1+0.2 可以见0.1+0.2在各种语言中的结果
回归正题,博主在numpy中求一个整数矩阵A 的逆矩阵 结果A-1是float型, A点积A-1的结果也是浮点型,并不是好看的对角为1的矩阵
在此可以在初始设置
numpy.set_printoptions(suppress=True)
%设置suppress是不使用科学计数
%括号里也可以是precision=位数,小数的位数
例子
import numpy as np
from numpy.linalg import inv,qr
a=np.array([[0,1,2],[1,1,4],[2,-1,3]])%线性代数书上一个例子
inv(a)%求逆矩阵
Out[26]:
array([[-7., 5., -2.],
[-5., 4., -2.],
[ 3., -2., 1.]])
np.dot(a,inv(a))
Out[28]:
array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 1.00000000e+00, 4.44089210e-16],
[8.88178420e-16, 2.22044605e-16, 1.00000000e+00]])
%本应该是对角1矩阵的
np.set_printoptions(suppress=True)
np.dot(a,inv(a))
Out[32]:
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
%现在就和py数据分析第二版里面的显示一样了