Codeforces 755F 规模较大的装箱dp

http://codeforces.com/problemset/problem/755/F

max只要仔细一点就好了,关键是求min

1.因为送礼数组是1-n的排列,所以首先把所有送礼的圈找出来。

2.简单贪心后,min只有可能是K或者K+1,到底是哪一个就看有没有 某些圈的size和刚好是K

3.然后好像就变成了一个(1e6*1e6)的装箱dp。就算bitset优化复杂度也在1e10以上。

4.题解就是一个套路: size大的圈bitset优化做,size小的中一样的放一起做多重背包(当然这个多重背包要是O(k)的)……

5.玄学……感受一下学个思想吧

6.还有分块标准也不总是sqrt,居然选什么做临界要看复杂度的表达式……

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
#include <cctype>
#include <cmath>
#include <vector>
#include <sstream>
#include <bitset>
#include <deque>
#include <iomanip>
using namespace std;
#define pr(x) cout << #x << " = " << x << endl;
#define bug cout << "bugbug" << endl;
#define ppr(x, y) printf("(%d, %d)\n", x, y);
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define SQR(a) ((a)*(a))
#define PCUT puts("\n---------------")

typedef long long ll;
typedef double DBL;
typedef pair<int, int> P;
typedef unsigned int uint;
const int MOD = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int maxn = 1e6 + 4;
const int maxm = 1e2 + 4;
const double pi = acos(-1.0);
int n, K;
int a[maxn];
bool vis[maxn]; 
vector<int> sz;
int cnt[maxm], lst[maxm];
bitset<maxn> dp;
int main(){
//必须编译过才能交
	int ik, i, j, k, kase;
	scanf("%d%d", &n, &K);
	for (i = 1; i <= n; ++i) scanf("%d", a+i);
	for (i = 1; i <= n; ++i)
		if (!vis[i]){
			int cnt = 0;
			int beg = i;
			do{
				cnt++;
				beg = a[beg];
				vis[beg] = true;
			}while(beg != i);
			sz.push_back(cnt);
		}
	int maxv = 0;
	if (K <= sz.size()) maxv = 2 * K;
	else if (K >= n - sz.size()) maxv = n;
	else{
		int tot = 0, res = 0;
		for (i = 0; i < sz.size(); ++i) tot += sz[i] - sz[i] % 2, res += sz[i]&1; 
		if (tot >= K*2) maxv = K * 2;
		else if (res >= (K-tot/2)) maxv = tot + K - tot/2;
		else maxv = n;
	}
	dp.reset();
	dp[0] = 1;
	for (i = 0; i < sz.size(); ++i)
		if (sz[i] >= 100)
			dp |= dp << sz[i];
		else cnt[sz[i]]++;
	for (i = 2; i < 100; ++i)
		if (cnt[i]){
			memset(lst, 0x3f, sizeof lst);
			for (j = 0; j <= K; ++j){
				int index = j % i;
				if (dp[j]) lst[index] = j;
				else if (lst[index] != inf && (j - lst[index]) / i <= cnt[i]) 
					dp[j] = true;
			}
		}
	int minv = dp[K] ? K : K + 1;
	printf("%d %d\n", minv, maxv);
	return 0;
}



引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值