简单易理解的,PCA主成分分析(python实现)

博主分享了高维数据降为低维度数据的方法,主要介绍了PCA主成分分析。包括其基本原理、基于原理的Python实现方法,以及利用Python机器学习库scikit - learn快速调用PCA的方式,还给出了相关知识参考文章链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近学习了,高维数据降为低维度数据的方法,了解了PCA主成分分析的方法。
(1)学习了基本原理

大体原理流程就是:
1.先计算数据集(n*m)的协方差矩阵,
2.再计算协方差矩阵的特征值和特征向量,
3.对特征值从大到小进行排序,选出你需要的前l个特征值,以及对应的特征向量。
4.将挑选的前l个特征向量重新组合成特征矩阵
5.原有数据集(n*m)乘以新的特征矩阵,实现了降维。

(2)基于原理的python的实现方法
(3)利用python机器学习库scikit-learn如何快速调用PCA。

涉及的特征值和特征向量的基本知识见下图。
在这里插入图片描述

这篇文章写的不错,简单易理解。

https://finthon.com/python-pca/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值