Nvidia Nano上从头构建Jetbot镜像安装指南

本文详细介绍了在Jetson Nano上从零开始构建Jetbot环境的全过程,包括烧录镜像、设置权限、安装Python依赖、TensorFlow和PyTorch等深度学习框架,以及配置JupyterLab和Jetbot服务。

目录

1. 烧录Jetson Nano镜像

2 设置i2c permissions

3 安装pip3和python依赖

4 安装TensorFlow

4.1 安装依赖

4.2 确定需要的TensorFlow版本

4.2.1 查看jetpack 版本

4.2.2 查看jetpack与tensorflow的对应关系

4.3 下载TensorFlow

4.4 安装TensorFlow

4.5 验证安装是否成功

5 安装pytorch

5.1源码编译pytorch

5.1.1 下载pytorch源码

5.1.2 设置编译参数

5.1.3 编译

5.2 安装pytorch

5.3 验证安装是否成功

6 安装traitlets

7 安装jupyter lab

8 安装jebbot repo

9 安装jetbot services

10 设置 swapfile

11 复制 JetBot notebooks 到home目录

12使用


JetBot 项目是NVIDIA(英伟达)基于Jetson Nano开发套件而设计的一款开源智能车项目。 它提供了基于视觉的自主避障,物体跟随,路径跟踪以及人脸识别等功能。对于AI初学者来说,Jetbot是一个很好的入门途径。

Nvidia官方提供了完整的硬件和软件列表,参考https://github.com/NVIDIA-AI-IOT/jetbot/wiki, 可以自行组装jetbot小车。但是,自己采购零件还是很麻烦,国内的微雪公司提供了完整的小车方案,可以直接从https://www.waveshare.net/list.html?cat=261购买。

硬件有了,软件环境的搭建也是一个大工程。Nvidia官方提供了Jetbot镜像下载(https://drive.google.com/open?id=1G5nw0o3Q6E08xZM99ZfzQAe7-qAXxzHN), 但是很不幸,镜像位于google仓库,国内如果没有翻墙软件,根本无法下载. 本文教你如何自己从头构建一个jetbot环境。

主要参考https://github.com/NVIDIA-AI-IOT/jetbot/wiki/Create-SD-Card-Image-From-Scratchhttps://blog.csdn.net/liam_dapaitou/article/details/90451808

1. 烧录Jetson Nano镜像

这一步简单,直接参照Nvidia的官方步骤即可。

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write

有的文章中要求ubuntu系统的用户名和密码需要为jetbot /jetbot, 按照我的实践结果,并不需要,使用自己喜欢的用户名和密码就可以。

2 设置i2c permissions

sudo usermod -aG i2c $USER

3 安装pip3和python依赖

sudo apt-get update
sudo apt install python3-pip python3-pil
sudo pip3 install --upgrade numpy 

 

4 安装TensorFlow

这里https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html

给出了官方步骤在jetson nano上安装tensorflow。

 

4.1 安装依赖

$ sudo apt-get update
$ sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran
$ sudo apt-get install python3-pip
$ sudo pip3 install -U pip testresources setuptools

  $ sudo pip3 install -U numpy==1.16.1 future==0.17.1 mock==3.0.5 h5py==2.9.0 keras_preprocessing==1.0.5 keras_applications==1.0.8 gast==0.2.2 futures protobuf pybind11

4.2 确定需要的TensorFlow版本

Jetson Nano镜像一直在更新jetpack的版本,随之使用的tensorflow版本也需要更新。所以首先需要确定自己的Jetpack版本,以及与tensorflow版本的对应关系。

 

4.2.1 查看jetpack 版本

    运行 $ head -n 1 /etc/nv_tegra_release

# R32 (release), REVISION: 4.3, GCID: 21589087, BOARD: t210ref, EABI: aarch64, DATE: Fri Jun 26 04:38:25 UTC 2020

note that, that version is jetpack4.4, not 4.3

4.2.2 查看jetpack与tensorflow的对应关系

下面链接给出了这个对应关系:

https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform-release-notes/tf-jetson-rel.html#tf-jetson-rel

我这里选的是最新的2.2.0, container20.07

4.3 下载TensorFlow

下面的网址:https://developer.nvidia.com/embedded/downloads#?search=tensorflow

 

选择需要的包下载。

4.4 安装TensorFlow

如下命令安装:

$ sudo pip3 install /local/jetbot/tensorflow-2.2.0+nv20.6-cp36-cp36m-linux_aarch64.whl

 

安装会持续很长时间,尤其在安装 sudo pip3 install grpcio 时,需要耐心等待。

4.5 验证安装是否成功

     1) 运行:

        $ python3

     2) Import TensorFlow:

        >>> import tensorflow

  &nbs

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值