自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

源的博客

欢迎光临

  • 博客(252)
  • 资源 (4)
  • 收藏
  • 关注

原创 数据集学习笔记(一): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)

文章目录xml转换为cocoxml转换为coco只要修改倒数第三四行的代码即可使用,倒数第四行主要是xml的文件夹,注意下路径斜杠的方向即可,倒数第三行就是这个xml的文件名,是val就写val,是train就写train。import xml.etree.ElementTree as ETimport osimport json coco = dict()coco['images'] = []coco['type'] = 'instances'coco['annotations'] =

2021-07-08 20:17:30 3570 2

原创 环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf

pip国内镜像源:阿里云 http://mirrors.aliyun.com/pypi/simple/清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/Python官方 https://pypi.python.org/simple/豆瓣 http://pypi.douban.com/simplev2ex http://pypi.v2ex.com/simple/

2021-01-07 16:59:29 7839 5

原创 基于YOLOV8/V11的监控视角下车牌实时检测系统-【训练源码/系统源码/模型/数据集/系统文档+Pyside6+包运行】

初始化界面检测结果界面下面将对部分核心功能进行简单展示1. 更换背景和标题演示用户可通过点击更换背景,选择想要更换背景的图片,系统便会自动更换壁纸;用户可通过点击更换标题,然后在文字输入栏中输入想要更换的标题,然后点击确定,即可更改系统标题。2. 模型选择和初始化演示用户可通过点击模型选择,选择想要加载的系统模型;然后点击权重初始化即可完成模型的准备工作。3. 图片检测演示用户可通过点击图片中的选择,选择想要加载的图片文件;然后点击检测,等待弹出图片检测完成的提示框,再点击展示。

2025-01-03 15:50:04 813

原创 基于YOLOv10的反光衣头盔目标实时检测系统【训练和系统源码+Pyside6+数据集+系统文档参考+包运行】

基于YOLOv10的反光衣头盔佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将YOLO格式数据集images和labels放入指定目录下,然后修改”yolov10\my_file\object_detection\dataset_cfg”下的data.yaml文件中的path路径指向datasets文件夹(绝对路径)。

2024-12-20 10:43:59 693

转载 解决failed with repodata from current_repodata.json, will retry with next repodata source

找到这个文件,将其中清华镜像源的地址由https改为http就可以了,下面是可以运行的.condarc文件内容。在Anaconda中创建新环境时遇到如下报错。最后重新运行,成功。

2024-12-13 09:17:59 696

原创 YOLOv10优改系列三:YOLOv10融合SOCA注意力机制,提升YoloV10有效目标关注能力

🌳论文地址点击🌳源码地址:-🌳论文概述SOCA注意力机制通过自适应地调整特征图中的通道和空间信息权重,从而提高目标检测的准确性和鲁棒性。它模拟了人类视觉系统中的注意力机制,能够自动关注并处理图像中的显著性特征。🌳主要思想及解决的问题SOCA(Second-Order Channel Attention)是一种注意力机制,一般的基于CNN的超分辨率的文章主要的焦点在于探索更深的网络或者是更宽的网络设置,没有考虑到高层特征之间的关联性。

2024-11-19 15:23:03 171

原创 YOLOv10优改系列二:YOLOv10融合CBAM注意力机制,赋能YoloV10小目标识别能力

🌳论文地址点击🌳源码地址🌳论文概述CBAM旨在克服传统卷积神经网络在处理不同尺度、形状和方向信息时的局限性。为此,CBAM引入了两种注意力机制:通道注意力和空间注意力。通道注意力有助于增强不同通道的特征表示,而空间注意力有助于提取空间中不同位置的关键信息。🌳主要思想CBAM 的核心主要思想是通过注意力机制来增强卷积神经网络对特征的提取和利用能力。在传统的 CNN 中,卷积层主要是通过固定的卷积核来提取特征,对于不同重要程度的特征缺乏自适应的区分能力。

2024-11-19 15:10:52 160

原创 Tkinter实战工具(一): 批量修改文件夹里文件名以及后缀(QT界面实现)

比如,当你有几十个甚至上百个文件需要统一命名格式或更改后缀以适应特定的软件要求时,批量修改能在很短的时间内完成任务,提高工作效率。对于一些项目或工作流程,文件的命名和后缀需要保持一致,以便更好地管理和识别。例如,在一个团队项目中,大家需要使用统一格式的文件名来方便协作和文件查找,批量修改功能可以轻松实现这一目标。通过批量修改文件名,可以添加特定的关键词或编号,使文件更容易分类和整理。比如,将一批图片文件的后缀从一种格式转换为另一种更通用的格式,以便在不同的设备或软件上查看和处理。

2024-10-18 16:32:09 987

原创 基于YOLOV8/V11的明厨亮灶老鼠实时检测系统【训练和系统源码+Pyside6+数据集+系统文档+包运行】

反光衣头盔佩戴实时检测系统通过先进的图像处理和人工智能技术,实时检测工业场景下反光衣和头盔目标的情况,保障工人安全。本文基于YOLOv10算法框架,通过4409张工业场景的训练图片(其中3768张训练集,641张验证集),训练出一个可用于检测工业场景下反光衣和头盔佩戴【包含未穿反光衣、穿反光衣、未佩戴头盔、佩戴头盔共计4类目标】情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv10的反光衣头盔佩戴实时检测系统,可用于实时检测反光衣和头盔佩戴情况,以及时告警。

2024-10-03 12:58:30 1056

原创 YOLOv10优改系列一:YOLOv10融合C2f_Ghost网络,让YoloV10实现性能的均衡

🌳论文地址点击🌳源码地址点击🌳论文摘要:GhostNet是一种轻量级的深度学习模型,通过GhostModule和GhostBottleNeck实现高效特征提取。GhostModule通过1x1卷积和深度可分离卷积生成更多特征图,减少参数量。GhostBottleNeck则是GhostModule的瓶颈结构,用于构建网络深度。GhostNet适用于资源有限的场景,如移动设备上的图像分类任务。🌳主要思想:(1)对卷积进行改进(2)加残差连接🌳解决方法。

2024-09-12 15:44:26 599

原创 基于YOLOv10的无人机巡航小目标实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

无人机巡航小目标实时检测系统通过先进的图像处理和人工智能技术,实时检测无人机场景下小目标的情况,促进安全出行。本文基于YOLOv10算法框架,通过7444张真实无人机场景的训练图片(其中6471张训练集,973张验证集),训练出一个可用于检测无人机场景下人和不同车型【包含行人、自行车、汽车、面包车、卡车、三轮车、遮阳三轮车、公交车、摩托车共计9类目标】情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv10的无人机巡航小目标实时检测系统。

2024-08-11 21:26:07 1335 1

原创 基于YOLOV8的骑行智能守护实时检测系统【训练和系统文档及源码+Pyside6+数据集+包运行】

骑行智能守护实时检测系统通过先进的图像处理和人工智能技术,实时检测电动车和车上人员头盔佩戴情况,促进安全出行,减少交通事故风险。本文基于YOLOv8算法框架,通过5448张真实道路场景的训练图片(其中4358张训练集,1090张验证集),训练出一个可用于检测电动车及车上人员头盔情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的骑行智能守护实时检测系统,可用于实时检测电动车及车上人员头盔情况,以及时告警。系统背景和标题修改模型权重导入和初始化。

2024-07-13 00:03:22 927

原创 Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)

如果我们想要根据json标注文件,获取里面的指定目标的裁剪区域,那么我们可以根据以下代码来实现(也可以校验标注情况)。

2024-05-31 11:24:41 483

原创 FFMPEG学习笔记(一): 提取视频的纯音频及无声视频

c:a libmp3lame:指定音频编解码器为 libmp3lame,这是 FFmpeg 中用于编码 MP3 文件的编解码器。output.mp4:指定输出文件,这里是 output.mp4,将会是一个没有音频的视频文件。output.mp3:指定输出文件名,这里 output.mp3 将会是提取出的音频文件。-i input.mp4:指定输入文件,input.mp4 是你的视频文件。-an:-an 是 -audio 的简写,后面不跟参数表示禁用音频。-vn:表示禁用视频,只提取音频。

2024-05-27 15:14:25 782

原创 Pyside6实操笔记(一):系统页面跳转

假设我们有个登录界面和注册界面,如果我们想要从登录界面跳转到注册界面注册用户名和密码,可以采取本篇博客的方式来实现。

2024-05-11 13:39:37 583

原创 目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。YOLOv7(You Only Look Once version 7)是YOLO系列目标检测算法的最新版本,以其高效的实时性能和出色的检测准确率而备受关注。模型优化与技术发展。

2024-05-07 14:24:30 2485

原创 jetson实操(二):jetson nano发送短信到指定用户

通过上述操作,我们可以得到appid、appkey、sign,然后更换下面代码的相关变量即可。

2024-05-06 18:15:25 362

原创 jetson实操(一):jetson nano发送指定信息到QQ邮箱

开启QQ邮箱的SMTP协议,按照指引操作,然后就能获取。

2024-05-06 15:02:53 369

转载 Python实用记录(十六):PyQt/PySide6联动VSCode便捷操作指南

rcc.exe 用于将.qrc文件编译成Python代码。uic.exe 用于将.ui文件转换为Python代码。rcc路径、uic路径、designer.exe路径。designer.exe 用于创建图形用户界面。这一步默认已经通过了。

2024-04-29 10:43:48 926 1

原创 YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点

🌳论文地址点击🌳源码地址点击🌳问题阐述:多年来,目标检测一直由基于锚点的检测器主导。最近,由于 FPN 和 Focal Loss 的提出,无锚检测器变得流行起来。在本文中,我们首先指出基于anchor的检测和无anchor的检测的本质区别实际上是如何定义正负训练样本,这导致了它们之间的性能差距。如果他们在训练时采用相同的正负样本定义,那么无论从一个盒子还是一个点回归,最终的性能都没有明显的差异。如何在不依赖复杂手工设计规则的情况下,利用有限的标注数据有效地进行目标分割训练。🌳主要思想。

2024-04-28 17:45:07 1221 2

原创 YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点

🌳论文地址点击🌳源码地址点击🌳问题阐述:传统的自上而下的FPN在本质上受到单向信息流的限制。为了解决这个问题,PANet 添加了一个额外的自底向上的路径聚合网络。最近,NAS-FPN 采用神经结构搜索来搜索更好的跨尺度特征网络拓扑,但在搜索过程中需要数千小时的GPU,发现的网络不规则,难以解释或修改。🌳主要思想:1. 高效的双向跨尺度连接;2. 加权特征图融合。🌳解决方法。

2024-04-22 01:57:57 4627 11

原创 基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

钢铁缺陷实时检测系统通过先进的图像处理和人工智能技术,实时检测钢铁缺陷目标,提高生产效率和产品质量,减少次品率和生产成本,确保钢铁制品的安全性和可靠性,促进工业生产的可持续发展。本文基于YOLOv8算法框架,通过1800张训练图片(其中1600张训练集,200张验证集),训练出一个可用于检测钢铁缺陷情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的钢铁缺陷实时检测系统,可用于实时检测钢铁缺陷情况,以及时告警。该系统是基于Python和Pyside6开发。

2024-04-21 22:07:32 1562

原创 基于YOLOv8的河道漂浮物实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

河道漂浮物实时检测系统通过先进的图像处理和人工智能技术,及时探测和清除水面垃圾,以维护水体的生态平衡和环境卫生,有助于防止污染物扩散,确保河流的持续健康和清洁。本文基于YOLOv8算法框架,通过2400张训练图片(其中1920张训练集,480张验证集),训练出一个可用于检测河道漂浮物情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的河道漂浮物实时检测系统,可用于实时检测河道漂浮物情况,以及时告警。该系统是基于Python和Pyside6开发,并支持以下功能特性。

2024-04-14 00:30:47 2545 1

原创 基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

工业安全帽实时检测系统通过先进的图像处理和人工智能技术,确保工作场所的安全,减少因未佩戴或不正确佩戴安全帽导致的意外伤害,降低工伤事故率。本文基于YOLOv8算法框架,通过7581张训练图片(其中6064张训练集,1517张验证集),训练出一个可用于检测工业安全帽和人头情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的工业安全帽实时检测系统,可用于实时检测安全帽佩戴的情况,以及时告警。该系统是基于Python和Pyside6开发,并支持以下功能特性。

2024-04-13 23:32:17 1462

原创 基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

人员跌倒实时检测系统通过先进的图像处理和人工智能技术,实现对公共场合或特定环境中人员活动的连续监控,可针对跌倒、蹲下、站立三种状态行为进行实时检测,以便及时采取救援措施,降低伤害风险,保障人员生命安全。本文基于YOLOv8算法框架,通过4978张训练图片(其中4035张训练集,943张验证集),训练出一个可用于检测人员跌倒情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的人员跌倒实时检测系统,可用于实时检测人员跌倒情况,以及时告警。该系统是基于。

2024-04-05 23:46:37 2029

原创 Python实用记录(十五):PyQt/PySide6打包成exe,精简版(nuitka/pyinstaller/auto-py-to-exe)

打包的话,用nuitka更适合,对PySide支持更好。压缩后仅15MB左右。

2024-04-02 20:35:34 4655 1

原创 基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

交通车辆实时检测系统利用尖端图像处理技术,对道路情况实施连续监控。旨在提升道路安全,实时识别车辆和违规行为,辅助降低拥堵,保障行车安全,进而改善交通环境管理。本文基于YOLOv8算法框架 ,通过5830张训练图片(其中5248张训练集,582张验证集),训练出一个可用于检测交通车辆情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的交通车辆实时检测系统,可用于实时检测交通车辆情况,以及时告警。该系统是基于Python和Pyside6开发,并支持以下功能特性。

2024-04-02 01:12:52 2243 1

原创 基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

火焰烟雾实时检测系统旨在实现对火源和烟雾的即时监测和警报,以预防火灾、保护生命财产安全。本文基于YOLOv8算法框架,通过6744张训练图片(其中5395张训练集,1349张验证集),训练出一个可用于检测火焰烟雾情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的火焰烟雾实时检测系统,可用于实时检测火焰烟雾情况,以及时告警。该系统是基于Python和Pyside6开发并支持以下功能特性系统背景和标题修改模型权重导入和初始化检测置信度和IOU调节。

2024-03-19 19:56:43 4955 3

原创 训练数据集(一):真实场景下采集的煤矸石目标检测数据集,可直接用于YOLOv5/v6/v7/v8训练

煤矸石训练数据集:891张;验证数据数据集:404张数据集类别:0代表煤炭(coal),1代表矸石(gangue),2代表煤炭和矸石的混合物(coal and gangue)所有数据都有对应的标签,可直接提供给YOLO网络进行训练,数据集已划分好。划分格式如下root_path:原图展示部分标注可视化结果展示。

2024-03-18 15:50:34 1308 4

原创 基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

人员抽烟实时检测系统旨在维护无烟环境,预防火灾,保护公众免受二手烟危害,并降低病毒传播风险。本文基于YOLOv8算法框架,通过2472张训练图片(其中2276张训练集,196张验证集),训练出一个可用于检测人群中抽烟情况的有效检测模型(主要用于公共场所的检测识别)。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的人员抽烟实时检测系统,可用于实时检测人群中的抽烟情况。该系统是基于Python和Pyside6开发并支持以下功能特性系统背景和标题修改模型权重导入和初始化。

2024-03-07 10:25:29 1640

原创 基于YOLOV8的口罩佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】

口罩佩戴实时检测系统可以帮助公共安全、医疗卫生等领域的工作人员快速地识别人们是否正确佩戴口罩,提高疫情防控效率,减少病毒传播风险。本文基于YOLOv8算法框架,通过7959张训练图片(其中6367训练集,1592验证集),训练出一个可用于检测人群中口罩佩戴情况的有效识别模型(主要用于公共场所和交通枢纽的检测识别)。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的口罩佩戴实时检测系统,可用于实时检测人群中的口罩佩戴情况。该系统是基于Python和Pyside6开发,

2024-02-29 15:11:42 1621

原创 Docker学习笔记(一):Docker命令总结

一、Docker介绍1.1 镜像与容器区别二、Docker命令Docker是一个开源的应用容器引擎,它允许开发者在几乎任何环境中运行应用程序,而无需担心运行环境的问题。Docker的核心概念是容器,它可以将应用程序及其依赖项打包在一起,形成一个独立的环境。这使得开发者可以在不同的机器上复制相同的运行环境,从而实现应用程序的快速部署和迁移。轻量级:Docker容器比虚拟机更轻量,因为它们共享宿主机的操作系统内核。这使得Docker容器启动速度更快,占用资源更少。

2024-01-04 15:19:26 1157

转载 Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数

这段代码的主要功能是统计文本文件中某个特定单词(在这里是’fishing’)出现的次数。

2023-10-10 10:00:43 696

原创 语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆

根据 mask 图像来画分割对象的外接椭圆是一种常见的图像分割任务。Mask 图像通常是一个二值图像,其中包含了感兴趣对象的像素。通常情况下,白色像素表示对象,黑色像素表示背景。

2023-10-08 18:22:51 1961

原创 测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)

FP(False Positives,假正例):表示模型错误预测为正类的样本数量,也就是将负例错误分类为正例的数量。FN(False Negatives,假负例):表示模型错误预测为负类的样本数量,也就是将正例错误分类为负例的数量。TP(True Positives,真正例):表示模型正确预测为正类的样本数量,也就是将正例正确分类为正例的数量。TN(True Negatives,真负例):表示模型正确预测为负类的样本数量,也就是将负例正确分类为负例的数量。然后通过下面的代码将源标签的txt文档进行总结。

2023-10-01 11:59:26 230

原创 目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)

PaddleClas主要构件PP-ShiTu: 图像识别(包含图像检测与图像搜索)PULC:超轻量图像分类PaddleClas是飞桨(PaddlePaddle)深度学习平台提供的一个开源项目,用于图像分类任务。它基于飞桨框架开发,致力于为用户提供一个简单、高效、灵活的图像分类工具。PaddleClas集成了许多常用的图像分类模型和数据增强方法,使得用户可以轻松地进行图像分类任务的训练和推理。

2023-09-19 12:30:38 2756 3

原创 语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)

语义分割是计算机视觉中的一项技术,旨在将图像中的每个像素分配给特定的类别。它与目标检测不同,目标检测是在图像中定位物体的位置和大小,而语义分割则进一步将这些物体划分为不同的类别。语义分割的目标是生成一张与原始图像相同大小的分割掩膜,其中每个像素都被分配到正确的类别中。这对于许多应用非常重要,例如自动驾驶、医学影像分析和机器人导航等。近年来,随着深度学习技术的发展,语义分割已经取得了很大的进展。现在有许多优秀的语义分割算法可供选择,包括FCN、U-Net、DeepLabv3+等。

2023-09-14 18:02:22 3323 2

原创 目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)

目标分类是一种监督学习任务,其目标是根据输入数据的特征将其分配到预定义的类别中。这种分类方法在许多实际应用中都有广泛的应用,如垃圾邮件检测、图像识别、情感分析等。目标分类的基本流程包括:数据预处理(如清洗、标准化)、特征提取、模型选择和训练、模型评估和优化。其中,模型的选择和训练是关键步骤,常见的分类算法有决策树、支持向量机、神经网络等。目标分类的优点是可以自动地进行分类,无需人工干预,同时也可以通过调整模型参数来提高分类的准确性。但是,目标分类也存在一些挑战,如数据的不平衡问题、过拟合问题等。

2023-09-13 16:14:55 756 1

原创 目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。论文链接背景:随着物体检测的发展,YOLO系列始终追求实时应用的最佳速度和精度权衡。而且在过去两年中,目标检测学术界的主要进展都集中在无锚检测器 、高级标签分配策略 和端到端(无 NMS)检测器。

2023-09-10 20:31:50 1331

原创 目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。

2023-09-08 17:44:25 25769 7

监控视角车牌检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是监控场景车牌检测数据集(作者通过多段真实视频顶抽帧以及网上获取的相关车牌图片并标注),按照一类目标【车牌】进行定位与分类标注并转换成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含4348张监控场景的训练图片,本文实验使用的训练集3478张,验证集870张。由结果可知,通过此数据集训练的YOLO11-S(100个epochs)plate目标的map@.5分别为99.1%,由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/144911638?spm=1001.2014.3001.5501(上传资源内附百度网盘下载地址)

2025-01-07

明厨亮灶老鼠检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是明厨亮灶老鼠检测数据集,通过真实厨房视频和网络采集视频进行抽帧处理,按照1类目标【mouse】进行定位与分类标注并转换成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含1342张图片,本文实验使用的训练集1009张,验证集333张。由结果可知,通过此数据集训练的YOLO11-S(100个epochs)mouse目标的map@.5分别为98.5%,由此证明,此数据集是有效的,数据集详细情况可见博客https://zzydl.blog.csdn.net/article/details/142690820?spm=1001.2014.3001.5502(上传资源内附百度网盘下载地址)

2024-12-23

反光衣头盔佩戴检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是反光衣头盔佩戴检测数据集,通过手机和摄像头采集并标注成YOLO格式,按照四类目标【未穿反光衣、穿反光衣、未佩戴头盔、佩戴头盔】进行定位与分类标注并转换成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含4409张图片,本文实验使用的训练集3768张,验证集641张。由结果可知,通过此数据集训练的YOLO10-S(100个epochs)vest、no-helmet、helmet、no-vest目标的map@.5分别为0.893、0.858、0.830、0.785,由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/142690820?spm=1001.2014.3001.5501(上传资源内附百度网盘下载地址)

2024-10-04

无人机巡航小目标实时检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是无人机巡航小目标实时检测数据集,通过无人机摄像头采集并标注成YOLO格式,按照九类目标【行人、自行车、汽车、面包车、卡车、三轮车、遮阳三轮车、公交车、摩托车】进行定位与分类标注并转换成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含7444张图片,本文实验使用的训练集6471张,验证集1973张。由结果可知,通过此数据集训练的YOLO10-S(100个epochs)pedestrian、people、bicycle、car、van、truck、tricycle、wning-tricycle、bus、motor目标的map@.5分别为0.259、0.185、0.107、0.649、0.399、0.405、0.211、0.241、0.527、0.268,由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/141111571?spm=1001.2014.3001.5501(上传资源内附百度网盘下载地址)

2024-08-13

两轮车佩戴头盔检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是两轮车佩戴头盔检测数集,通过网络摄像头采集并标注成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含5448张图片,类别包括[两轮车, 骑两轮车佩戴头盔,骑两轮车未佩戴头盔]三类,本文实验使用的训练集4358张,验证集1090张。由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)two_wheeler、wo_helmet和helmet目标的map@.5分别为0.961、0.549和0.702,由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/140391035?spm=1001.2014.3001.5501(上传资源内附百度网盘下载地址)

2024-08-07

钢铁缺陷检测数据集:用于YOLO模型训练的高质量数据集

此数据集为钢铁缺陷数据集,通过东北大学真实采集并标注成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含1800张图片,类别包括 [crazing(裂纹), inclusion(夹杂物), patches(斑块), pitted_surface(麻点), rolled-in_scale(氧化铁皮), scratches(划痕)]六类,本文实验使用的训练集1600张,验证集200张。由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)六类目标的map@.5分别为0.672、0.478、0.933、0.915、0.673、0.718。由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/138047059?spm=1001.2014.3001.5502(上传资源内附百度网盘下载地址)

2024-04-21

河道漂浮物检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是河道漂浮物数据集,通过网络采集并标注成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含2400张图片,类别包括[ball(球), grass(野草), bottle(塑料瓶), branch(树枝), milk-box(牛奶盒), plastic-bag(塑料袋), plastic-garbage(塑料垃圾), leaf(落叶)]八类,本文实验使用的训练集1920张,验证集480张。由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)ball、grass、bottle、branch、milk-box、plastic-bag、plastic-garbage和leaf目标的map@.5分别为0.850、0.617、0.544、0.947、0.503、0.856、0.781和0.961,由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/137729446?spm=1001.2014.3001.5502(上传资源内附百度网盘下载地址)

2024-04-14

工业安全帽检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是工业安全帽数据集,通过网络采集并标注成YOLO格式,并对此数据集进行了划分,可直接用于训练。此数据集共包含7581张图片,类别为[“hat”,“person”],本文实验使用的训练集6064张,验证集1517张。由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)hat和person目标的map@.5分别为0.921、0.894,由此证明,此数据集是有效的,数据集详细情况可见博客https://blog.csdn.net/m0_51004308/article/details/137728468?spm=1001.2014.3001.5501(上传资源内附百度网盘下载地址)

2024-04-13

人员跌倒检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是人员跌倒数据集,通过网络采集并标注成YOLO格式,并对此数据集进行了数据增强处理,以增加其鲁棒性。此数据集共包含4978张图片,类别为[“UP”,“Down”,“Squat”](站立、跌倒、蹲下),本文实验使用的训练集4035张,验证集943张。由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)站立、跌倒、蹲下目标的map@.5分别为0.864、0.864、0.656,由此证明,此数据集是有效的。可见博客https://blog.csdn.net/m0_51004308/article/details/137412524(上传资源内附百度网盘下载地址)

2024-04-05

道路车辆检测数据集:用于YOLO模型训练的高质量数据集

本文使用的是交通车辆数据集,该数据集来自美国伊利诺伊州芝加哥市的交通监控摄像头所捕获的图片集合,这些图片经过随机增强处理后进行了融合。包含5830张训练图片,类别为[car],本文实验训练集5248张,验证集582张。由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)car目标的map@.5为0.732,由此证明,此数据集是有效的。可见博客https://blog.csdn.net/m0_51004308/article/details/137251729(上传资源内附百度网盘下载地址)

2024-04-02

火焰烟雾检测数据集:用于YOLO模型训练的高质量数据集

火焰烟雾数据集共包含6744张图片,YOLO格式,类别是[smoke,fire]。通过实验训练集5395张,验证集1349张,由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)smoke和fire目标的map@.5分别为0.755和0.900,由此证明,此数据集是有效的。可见博客https://blog.csdn.net/m0_51004308/article/details/136851850?spm=1001.2014.3001.5501 (上传资源内附百度网盘下载地址)

2024-03-19

真实场景下煤矸石目标检测数据集,可直接用于YOLOv5/v6/v7/v8训练

真实场景下采集的煤矸石训练数据集:891张;验证数据数据集:404张 数据集类别:0代表煤炭(coal),1代表矸石(gangue),2代表煤炭和矸石的混合物(coal and gangue) 所有数据都有对应的标签,可直接提供给YOLO网络进行训练,数据集已划分好。 煤炭mAP@.5:0.896 矸石mAP@.5:0.811 煤炭和矸石的混合物mAP@.5:0.919 可见博客:https://blog.csdn.net/m0_51004308/article/details/136811369?spm=1001.2014.3001.5502

2024-03-18

人员抽烟检测数据集:用于YOLO模型训练的高质量数据集

抽烟数据集共包含2276张图片,YOLO格式,类别是[smoke]。通过实验训练集2276张,验证集196张,由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)可达到map@.5为0.879,由此证明,此数据集是有效的。可见博客https://blog.csdn.net/m0_51004308/article/details/136524883?spm=1001.2014.3001.5501#41__138 (上传资源内附百度网盘下载地址)

2024-03-07

实时口罩佩戴检测数据集:用于YOLO模型训练的高质量数据集

口罩数据集共包含7959张图片,YOLO格式,分为两大类别,分别是[no_mask, mask]。通过实验训练集6367张,验证集1592张,由结果可知,通过此数据集训练的YOLOv8-S(100个epochs)可达到map@.5(mask)为0.978,map@.5(no_mask)为0.857,由此证明,此数据集是有效的。可见博客https://blog.csdn.net/m0_51004308/article/details/136371974?spm=1001.2014.3001.5502 (上传资源内附百度网盘下载地址)

2024-03-02

Arcface+BS界面+YOLOv5Face,毕业设计代码

Arcface+BS界面+YOLOv5Face,毕业设计代码

2024-03-02

车牌识别系统,GUI界面,可运行,车牌检测,车牌颜色检测,车牌识别

车牌识别系统,GUI界面,可运行,车牌检测,车牌颜色检测,车牌识别

2024-03-02

CS界面模版 可直接运行

CS界面模版 可直接运行

2024-03-02

yolov5剪枝代码可运行

yolov5剪枝代码可运行

2024-03-02

bert大模型自动标注工具,便于自己以后查看

bert大模型自动标注工具,便于自己以后查看

2024-03-02

包含mmdeploy、mmdetection、mmpretrain源码,已跑通可运行

包含mmdeploy、mmdetection、mmpretrain源码,已跑通可运行

2024-03-02

yolov5自动标注工具

yolov5自动标注工具

2024-03-02

包含500道leetcode题,从简单到难的都有,提供代码实现

包含500道leetcode题,从简单到难的都有,提供代码实现

2024-03-02

502代码,可生成烟花,网页,登录注册都有,还可以结合女朋友图片来做一个3D界面,效果很好

502代码,可生成烟花,网页,登录注册都有,还可以结合女朋友图片来做一个3D界面,效果很好

2024-03-02

python调节图片亮度

python调节图片亮度

2024-03-02

系统视频1111111

系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频系统视频

2024-03-02

目标检测性能指标计算-实际代码-可参考

测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测) 通过给定的算法接口,对算法的输出(置信度、检测框、告警、类别等)进行数据处理,结合原标签完成TP、FP、FN、TN、准确率、召回率的指标测试。

2023-10-01

基于Tkinter和YOLOv5完成数据集的自动标注可视化操作代码

基于Tkinter和YOLOv5的数据集自动标注可视化操作代码是一个用于图形用户界面(GUI)的工具,可以帮助用户使用YOLOv5模型对数据集进行自动标注,并提供可视化操作功能。

2023-08-28

ChatGPT-学术优化工具

为GPT/GLM提供图形交互界面,特别优化论文阅读润色体验,模块化设计支持自定义快捷按钮&函数插件,支持代码块表格显示,Tex公式双显示,新增Python和C++项目剖析&自译解功能,PDF/LaTex论文翻译&总结功能,支持并行问询多种LLM模型,支持清华chatglm等本地模型。兼容llama,rwkv,盘古大模型等。 为了能更便捷的体验此项目,本人使用pyinstaller直接将其封装成exe程序,用户可以不用安装配置环境且不用配置SK秘钥,只需要傻瓜式的通过VPN点击里面的exe文件即可直接使用,如有需要可以直接下载使用。

2023-05-05

bootstrap-3.4.1模板

如果需要教程,可查看这篇博客 《https://blog.csdn.net/m0_51004308/article/details/129588912?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22129588912%22%2C%22source%22%3A%22m0_51004308%22%7D》

2023-03-16

自动化测试项目安装包,配套学习

tomcat+jpress+jdk

2022-10-13

深度学习目标检测综述.docx

本资源是word文档,共9765个字,包括参考文献,按照学报格式撰写,这篇文章综述了近年来基于深度学习的目标检测的最新进展,包括传统目标检测,一阶段目标检测以及两阶段目标检测的分析,还分析了在识别任务中使用的一些突出的骨干网络和目标检测中常用的数据集。比较好的目标检测网络对于具有实时性的目标检测研究更为必要。

2021-06-18

reduce_error_pic.zip

由于这些数据集是通过爬虫直接在网上下载的,有很多错误的图,需要把它们找出来进行删除。 1:使用RetinaFace对给定的图片做人脸检测,对于提取不到landmark/boundingbox的图片逐个做分析。 2:将图像缩小送进网络训练发现很多都可以检测出来了,其实retinaface对尺度比较小的图片效果会好很多 直接通过运行data2下面的data_reduce.py(设置好使用你想要清洗的数据集路径)即可

2021-06-09

torchvision-0.7.0-cp37-cp37m-win_amd64.zip

torchvision-0.7.0-cp37-cp37m-win_amd64.whl

2021-01-28

Anaconda+Pycharm快捷方式图标.zip

内提供 spyder,navigator,prompt,jupyter,pycharm快捷方式图标

2021-01-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除