线性代数——行列式

        # 个人复习用,来源于2022张宇考研九讲

定义

行列式是由n个n维向量组成,其运算规则为n个向量为邻边的n为图形的有向体积。

  • 若Diag(A)= 0,则说明V=0,即有向量组线性相关
  • 若Diag(A)\neq 0,则说明V\neq0,即向量线性无关

性质

  • 行列互换,值不变(行列地位相等)
  • 某行元素全为零,值为零
  • 两行元素为倍数关系,值为零
  • 单行可拆分成两个元素之和,其余行不变,变成两个行列式之和
  • 任意两行互换,值相反
  • 单行可提公因式
  • 行列式某行k倍加到另一行,值不变

展开定理

余子式M_{ij}

          剩余的行列式(去掉a_{ij}所在行与列后的n-1阶)

代数余子式A_{ij}

         A_{ij}=(-1)^{i+j}M_{ij},反过来也是一样的关系

按某一行展开

        |A|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}=\sum_{j=1}^{n}a_{ij}A_{ij}(i=1,2,...,n)

具体数值型行列式计算

12+1

主对角线

        左下或右上三角全为零,值为主对角线元素之积

副对角线

        左上或右下三角全为0,值为(-1)^{\frac{n(n-1)}{2}}\prod_{i=1}^{n}a_{i,(1+n-i)}

拉普拉斯展开式

        A为m阶方阵,B为n阶方阵,则

\begin{vmatrix} A & 0\\ 0 & B \end{vmatrix}=\begin{vmatrix} A & C\\ 0 & B \end{vmatrix}=\begin{vmatrix} A & 0\\ C & B \end{vmatrix}=|A||B|

\begin{vmatrix} 0 & A\\ B & 0 \end{vmatrix}=\begin{vmatrix} C & A\\ B & 0 \end{vmatrix}=\begin{vmatrix} 0 & A\\ B & C \end{vmatrix}=(-1)^{mn}|A||B|

范德蒙行列式

\begin{vmatrix} 1 & 1 & ... & 1\\ x_1 & x_2 & ... & x_n\\ x^2_1 & x^2_2 & ... & x^2_n\\ ... & ... & ... & ...\\ x^{n-1}_1 & x^{n-1}_2 & ... & x^{n-1}_n \end{vmatrix}=\prod_{1\leq i< j\leq n}(x_j-x_i),n\geq 2

 化简方案

  • 按零多的行或列展开
  • 用性质对差别小的行或列处理,得到零再展开
  • 所有行和相等,则加到同一列提出公因式使得这一列全为1,再使用倍加使得这一列只有一个1
  • 倍加处理构造零块,利用拉普拉斯展开式
  • 爪形行列式(四种类型)消去某一个行或列转化成三角行列式

加边法(无公共规律)

        目的为消去各列各个元素中某项的公共因子,第一列前面补零

递推法(高阶到低阶)

  1. 递推公式,建立n阶与n-1阶的关系,通过展开公式建立
  2. n阶与n-1阶有着完全相似的元素分布(特别的异爪形,从并爪多的某一列或行展开)

数学归纳法(低阶到高阶)

n阶行列式证明(已经给出计算结果)

第一数学归纳法(一阶差分n阶与n-1阶关系)

  1. 验证n=1
  2. 假设n=k成立
  3. 证明n=k+1成立

第二数学归纳法(二阶差分法n阶与n-1阶以及n-2阶关系)

  1. 验证n=1、2
  2. 假设n<k成立
  3. 证明n=k成立

抽象字母型行列式计算

利用行列式性质

利用矩阵知识

  • C=AB,A、B为同阶方阵,则|C|=|AB|=|A||B|
  • C=A+B,A、B为同阶方阵,则|C|=|A+B|,做恒等变形,转化为矩阵乘积的行列式

                利用题目条件(如:AA*A^T=E

                E的妙用A*A^{-1}=E

  • A为n阶方阵,|A^*|=|A|^{n-1} |(A^*)^*|=||A|^{n-2}A|=|A|^{(n-1)^2}

\left\{\begin{matrix}|kA|^{-1}=\frac{1}{k}A^{-1},k\neq 0 \\ |kA|=k^n|A| \\ (kA)^T=kA^T \\ (kA)^*=k^{n-1}A^* \end{matrix}\right.

用相似理论

  • |A|=\prod_{i=1}^{n}\lambda _i
  • 若A相似于B,则|A|=|B|
矩阵AkAA^kf(A)A^{-1}A^*P^{-1}AP
特征值\lambdak\lambda\lambda\lambda\frac{1}{\lambda }\frac{1}{\lambda }\lambda

\frac{|A|}{\lambda }=\lambda ^*

余子式和代数余子式计算

行列式展开公式

掌握原理:A_{ij}只取决于i、j的位置,而与A_{ij}无关

总结:某一行展开后,系数灵活改变,可以凑出零行列式等特殊情况,巧妙设计未知数可以求解

 使用矩阵

|A|\neq0,A^*=|A|A^{-1},其中伴随矩阵为A^*=\begin{pmatrix} A_{11} & A_{21} & ... & A_{n1} \\ A_{12} & A_{22} & ... & A_{n2} \\ ... & ... & ... & ...\\ A_{1n} & A_{2n} & ... & A_{nn} \end{pmatrix},AA^*=|A|E

 使用特征值

tr(A)=a_{11}+a_{22}+a_{33}=\lambda _1+\lambda _2+\lambda _3A_{11}+A_{22}+A_{33}=tr(A^*)=\lambda _1\lambda _2+\lambda _1\lambda _3+\lambda _3\lambda _2

余子式问题

先求代数余子式,再在前面乘上正负的系数即可.

 

 

 

 

 

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

临危诡局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值