归纳法证明行列式性质

行列式中有一个重要性质,描述是,交换矩阵两行,行列式变号.

不同与课本中使用逆序数的证明,这里采用归纳法,证明如下:

数学归纳法,设

A_{2\times 2} = \begin{bmatrix} a_{12} & a_{12}\\ a_{21}& a_{22} \end{bmatrix}

那么

det(A)=\left| A\right |=\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{21}a_{12}

变换一,二行的初等矩阵是:

E_{12}=\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}

det(E_{12}A)= \begin{vmatrix} a_{21} & a_{22} \\ a_{11} &a_{12} \end{vmatrix} = a_{21}a_{12}-a_{22}a_{11} = -det(A)

假设n=k的时候成立,那么当n=k+1的时候.E_{ij}表示交换i,j行的初等变换

\\det(E_{ij}A) = (-1)^{s+1}a_{s1}det(M_{s1}) + (-1)^{s+2}a_ {s2}det(M_{s2})+ \cdots + (-1)^{s+(k+1)}a_{s,k+1}(M_{s, k+1})

s是不同于i,j的行.

由于M_{sm} \quad m\in 1, 2, \cdots,k+1k阶矩阵,由假设知,det(E_{ij}M)= -det(M')M'是未经变换前的A矩阵的余子式.

\\det(E_{ij}A) = (-1)^{s+1}a_{s1}det(M_{s1}) + (-1)^{s+2}a_ {s2}det(M_{s2})+ \cdots + (-1)^{s+(k+1)}a_{s,k+1}(M_{s, k+1})\\ \\=(-1)\cdot (-1)^{s+1}a_{s1}det(M'_{s1}) + (-1)\cdot (-1)^{s+2}a_ {s2}det(M'_{s2})+ \cdots + (-1)\cdot (-1)^{s+(k+1)}a_{s,k+1}(M'_{s, k+1}) \\ \\= (-1)\begin{bmatrix} (-1)^{s+1}a_{s1}det(M'_{s1}) + (-1)^{s+2}a_ {s2}det(M'_{s2})+ \cdots + (-1)^{s+(k+1)}a_{s,k+1}(M'_{s, k+1}) \end{bmatrix}\\ \\=-1 \cdot det(A)

所以,证明完毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值