Tensorflow: tensorflow中axis参数的说明

t = tf.constant([[1,2,3],[4,5,6]])
>>> k = tf.reduce_mean(t, axis=0)
		     
>>> with tf.Session() as sess:
		     print(k.eval())

[2 3 4]

可以看出axis=0时,是行方向的缩减

而在tf.clip_by_norm函数中也是一样的,手册是这样写的:

As another example, if t is a matrix and axes == [1], then each row of the output will have L2-norm equal to clip_norm. If axes == [0] instead, each column of the output will be clipped.

即当axes为0的时候,对一整列求L2最大L2惩罚,在行方向上放缩。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值