Python: 记录一个关于图片直接转化为pytorch.tensor和numpy.array的不同之处的问题

img = Image.open(img_path).convert("RGB") img2 = torchvision.transforms.functional.to_tensor(img) print(img2) img1 = np.array(img) prin...

2019-08-12 00:28:14

阅读数 17

评论数 0

文本分类中使用TfidfVectorizer()

在文本分类中,经常使用到TfidfVectorizer()函数,这个函数把词转换为向量,TF是词频,idf是逆文本频率,idf表现一个词在所有文本中出现的频率,它出现的越多说明越不重要,idf即是一个词的重要程度体现,越高越重要。 在使用这个函数的时候,需要注意的是,它所输出的结果是一个scip...

2019-05-30 09:42:33

阅读数 116

评论数 0

机器学习:概率校准

sklearn.calibration.CalibratedClassifierCV 概率校准是对分类的一个补充,优化算法或者验证算法的最优性。 这个博客上解释的非常好

2019-05-30 09:00:22

阅读数 41

评论数 0

Pytorch: RuntimeError: expected Double tensor (got Float tensor)

normalize = tvtsf.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) img = normalize(t.from_numpy(img)) 在这...

2019-05-25 09:00:59

阅读数 19

评论数 0

python四个魔法方法__len__,__getitem__,__setitem__,__delitem__

转自:https://blog.csdn.net/yuan_j_y/article/details/9317817 python中除了可以使用内建的类型,如list,tuple,dict,还可以创建自己的对象来实现像这些内建类型的访问,不过需要在定义类的时候对一些魔法方法逐一实现。 如下: ...

2019-05-17 22:00:57

阅读数 12

评论数 0

Matplotlib:生成图片但不显示图片

Generate images without having a window appear 使用matplotlib.use()函数设置制图后端。 import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt...

2019-05-10 10:28:44

阅读数 152

评论数 0

Python: 关于类初始化使用的一点细节

先上代码 >>> class nn: def __init__(self,ss,kk): self.ss=ss self.kk=kk >>> class kn(nn): def __init__(...

2019-05-05 20:54:08

阅读数 33

评论数 0

Pytorch: tensor.expand_as()

把一个tensor变成和函数括号内一样形状的tensor,用法与expand()类似 >>> x = torch.tensor([[1], [2], [3]]) >>> x.size() torch.Size(...

2019-05-02 21:20:09

阅读数 1840

评论数 0

Pytorch: self()的疑问

在新构建一个网络的过程中,我们通常继承torch.nn.Module,定义了__init__和forward函数之后,我们有的时候会用到 self(),我在https://github.com/chenyuntc/simple-faster-rcnn-pytorch/blob/master/mo...

2019-05-02 16:06:36

阅读数 38

评论数 0

Pytorch: 设置局部梯度

torch.no_grad(),torch.enable_grad(),torch.set_grad_enabled() 这三个函数对于设置局部梯度和赋能梯度计算。 上代码: >>> x = torch.zeros(1, requires_grad...

2019-05-01 10:43:19

阅读数 88

评论数 0

Pytorch: permute()函数,contiguous(),view()

permute函数将tensor的维度换位 contiguous()一般在permute()等改变形状和计算返回的tensor后面,因为改变形状后,有的tensor并不是占用一整块内存,而是由不同的数据块组成,而tensor的view()操作依赖于内存是整块的,这时只需要执行contiguous...

2019-04-30 16:45:41

阅读数 347

评论数 0

Numpy: stack()

https://blog.csdn.net/u013019431/article/details/79768219

2019-04-23 21:34:15

阅读数 25

评论数 0

Numpy : np.prob

返回给定维度上各个元素的乘积 numpy.prod(a,axis=None,dtype=None,out=None,keepdims=<no value>,initial=<no value>) axis是指求积的维度 keepdims...

2019-04-23 08:29:47

阅读数 150

评论数 0

Numpy : 关于np.finfo函数

用法在这个网页中讲的比较好,有例子 先上代码: #这是一个faster-rcnn中bbox_tools中的代码 eps = xp.finfo(height.dtype).eps height = xp.maximum(height, eps) width = xp.m...

2019-04-23 00:14:23

阅读数 727

评论数 0

Numpy : 使用np.newaxis增加一维,用于计算【很方便】

>>> newaxis is None True >>> x = np.arange(3) >>> x array([0, 1, 2]) >>&...

2019-04-22 21:34:47

阅读数 23

评论数 0

Numpy : std()

极差 : 最大值 - 最小值 总体方差 :分母为N 样本方差 : 分母为N-1 极差 内置方法都可以:max(data)-min(data) 总体方差 np.var()、nanvar() 样本方差 np.var(ddof=1) 总体标准差 np...

2019-04-21 21:47:05

阅读数 220

评论数 0

Pytorch: 在预训练模型中输入的数据预处理

我们经常看到: transform = transforms.Compose([ transforms.RandomResizedCrop(100), transforms.RandomHorizontalFlip(), transforms.T...

2019-04-21 21:30:26

阅读数 59

评论数 0

Tensorflow: tf.add_to_collection

在default graph上封装了Graph.add_to_collection() 先定义一下什么叫collection: 一个Graph实例支持由名称标识的“集合”任意数量。为了方便构建大型图形,集合可以存储相关对象组:例如,对构建图形期间创建的所有变量tf.Variable使用集合(命...

2019-04-17 16:32:27

阅读数 8

评论数 0

Tensorflow: tensorflow中axis参数的说明

t = tf.constant([[1,2,3],[4,5,6]]) >>> k = tf.reduce_mean(t, axis=0) >>> with tf.Session() as sess:...

2019-04-17 15:02:01

阅读数 36

评论数 0

Numpy: *号在python中的作用

将*元组解压缩为多个输入参数。可以作为维度输入的形状np.random.rand 用于解压缩,在zip函数中也会用到 np.random.rand(*(2,3)) # The same as np.random.rand(2,3) ...

2019-04-17 10:31:00

阅读数 17

评论数 0

提示
确定要删除当前文章?
取消 删除