第十一周--项目1 - 二叉树算法验证(3)中序线索化二叉树的算法验证

问题描述及代码:

/* 
Copyright (c)2015,烟台大学计算机与控制工程学院 
All rights reserved. 
文件名称:第十一周项目1 - 二叉树算法验证.cpp 
作    者:刘春彤
完成日期:2016年11月7日 
版 本 号:v1.0 
 
问题描述:  运行并重复测试教学内容中涉及的算法。改变测试数据进行重复测试的意义在于, 
           可以从更多角度体会算法,以达到逐渐掌握算法的程度。 
           使用你的测试数据,并展示测试结果,观察运行结果,以此来领会算法。   
输入描述: 若干测试数据。 
程序输出: 对应数据的输出。 
*/  

#include <stdio.h>  
#include <malloc.h>  
  
#define MaxSize 100  
typedef char ElemType;  
typedef struct node  
{  
    ElemType data;  
    int ltag,rtag;      //增加的线索标记  
    struct node *lchild;  
    struct node *rchild;  
} TBTNode;  
  
void CreateTBTNode(TBTNode * &b,char *str)  
{  
    TBTNode *St[MaxSize],*p=NULL;  
    int top=-1,k,j=0;  
    char ch;  
    b=NULL;             //建立的二叉树初始时为空  
    ch=str[j];  
    while (ch!='\0')    //str未扫描完时循环  
    {  
        switch(ch)  
        {  
        case '(':  
            top++;  
            St[top]=p;  
            k=1;  
            break;      //为左结点  
        case ')':  
            top--;  
            break;  
        case ',':  
            k=2;  
            break;                          //为右结点  
        default:  
            p=(TBTNode *)malloc(sizeof(TBTNode));  
            p->data=ch;  
            p->lchild=p->rchild=NULL;  
            if (b==NULL)                    //*p为二叉树的根结点  
                b=p;  
            else                            //已建立二叉树根结点  
            {  
                switch(k)  
                {  
                case 1:  
                    St[top]->lchild=p;  
                    break;  
                case 2:  
                    St[top]->rchild=p;  
                    break;  
                }  
            }  
        }  
        j++;  
        ch=str[j];  
    }  
}  
  
void DispTBTNode(TBTNode *b)  
{  
    if (b!=NULL)  
    {  
        printf("%c",b->data);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispTBTNode(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispTBTNode(b->rchild);  
            printf(")");  
        }  
    }  
}  
  
TBTNode *pre;                       //全局变量  
  
void Thread(TBTNode *&p)  
{  
    if (p!=NULL)  
    {  
        Thread(p->lchild);          //左子树线索化  
        if (p->lchild==NULL)        //前驱线索  
        {  
            p->lchild=pre;          //建立当前结点的前驱线索  
            p->ltag=1;  
        }  
        else p->ltag=0;  
        if (pre->rchild==NULL)      //后继线索  
        {  
            pre->rchild=p;          //建立前驱结点的后继线索  
            pre->rtag=1;  
        }  
        else pre->rtag=0;  
        pre=p;  
        Thread(p->rchild);          //右子树线索化  
    }  
}  
  
TBTNode *CreaThread(TBTNode *b)     //中序线索化二叉树  
{  
    TBTNode *root;  
    root=(TBTNode *)malloc(sizeof(TBTNode));  //创建根结点  
    root->ltag=0;  
    root->rtag=1;  
    root->rchild=b;  
    if (b==NULL)                //空二叉树  
        root->lchild=root;  
    else  
    {  
        root->lchild=b;  
        pre=root;               //pre是*p的前驱结点,供加线索用  
        Thread(b);              //中序遍历线索化二叉树  
        pre->rchild=root;       //最后处理,加入指向根结点的线索  
        pre->rtag=1;  
        root->rchild=pre;       //根结点右线索化  
    }  
    return root;  
}  
  
void ThInOrder(TBTNode *tb)  
{  
    TBTNode *p=tb->lchild;      //指向根结点  
    while (p!=tb)  
    {  
        while (p->ltag==0) p=p->lchild;  
        printf("%c ",p->data);  
        while (p->rtag==1 && p->rchild!=tb)  
        {  
            p=p->rchild;  
            printf("%c ",p->data);  
        }  
        p=p->rchild;  
    }  
}  
  
int main()  
{  
    TBTNode *b,*tb;  
    CreateTBTNode(b,"A(B(D(,G)),C(E,F))");  
    printf(" 二叉树:");  
    DispTBTNode(b);  
    printf("\n");  
    tb=CreaThread(b);  
    printf(" 线索中序序列:");  
    ThInOrder(tb);  
    printf("\n");  
    return 0;  
}  

运行结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值