- 博客(18)
- 收藏
- 关注
原创 tinyxml2的入门教程
xml 是一种标记型文档,有两种基本解析方式:DOM(Document Object Model,文档对象模型)和SAX(Simple APIs for XML,简单应用程序接口)。DOM 将 xml 文档全部内容解析成一个对象模型树,通过对这个对象模型进行操作来实现对数据的操作。优点:– 解析成树的结构对象,可以实现增删改操作缺点:– 当 xml 文件过大时,比较占用内存SAX 以事务为驱动,对 xml 文档从上之下,一行一行解析,当解析到事务对象则返回。
2024-07-24 14:24:58 998
原创 jupyter导出pdf或html时,显示中文并隐藏输入(有效版)
jupyter 导出 pdf 或 html 文件时,有两点:1、显示中文 2、隐藏输入我推荐创建一个虚拟环境,在虚拟环境中用 conda 命令安装 jupyter 插件,这样会直接安装 jupyter 和各种包这样虚拟环境中,jupyter 有了,插件也有了。
2024-07-15 14:33:52 432
原创 论文翻译——BoW3D:用于3D激光雷达SLAM回环检测的实时词袋模型
环路闭合是自主移动系统SLAM的基本组成部分。在视觉SLAM领域,Bag of Words(Bow)在环路闭合方面取得了巨大成功。用于闭环搜索的BoW特性也可以用于随后的6自由度环校正。然而,对于3D激光雷达SLAM,目前最先进的方法可能无法有效地实时识别环路,而且通常无法纠正完整的6自由度环路姿态。了解决这一限制,本文提出了一种在3D激光雷达SLAM中用于实时闭环检测的新颖的Bag of Words,称为BoW3D。该方法不仅有效地识别了重复的环路位置,而且实时校正了完整的六自由度环路位姿。
2023-06-13 17:00:55 1410
原创 论文翻译——LinK3D:三维LiDAR点云的线性关键点表示
特征提取和匹配是许多计算机视觉任务的基本部分,例如二维或三维物体检测、识别和配准。众所周知,二维特征提取和匹配已经取得了很大的成功。遗憾的是,在3D领域,由于描述能力差和效率低,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决这一局限性,我们提出了一种新的3D特征表示方法:用于3D LiDAR点云的线性关键点表示,称为LinK3D。
2023-06-12 23:08:55 891
原创 LOAM全文翻译
我们提出了一种在[[6自由度]]范围内利用[[2轴激光雷达]]进行距离测量实现SLAM的方法。这个问题难点在于测量的距离信息是在不同的时间接收的(因为激光雷达需要通过旋转的方式采集信息),并且运动估计中的误差可能会导致产生的点云错误配准。迄今为止,通过[off-line batch(离线批处理)方法]可以构建3D地图,并使用[loop closure(循环闭合)]来校正随时间的漂移。我们实现了一种低漂移和低计算复杂度的方法,无需高精度测距或惯性测量。
2023-06-11 21:28:35 640
原创 SLAMBook2纠错记录:Fatal error:Eigen/core没有那个文件或目录
SLAMBook2纠错记录:Fatal error:Eigen/core没有那个文件或目录
2023-02-13 19:52:04 1166
原创 运行gmapping算法建图时,ERROR: cannot launch node of type [gmapping/slam_gmapping]: gmapping,解决方法
运行gmapping算法建图时,ERROR: cannot launch node of type [gmapping/slam_gmapping]: gmapping,解决方法
2022-07-19 18:08:42 2813
原创 X86_64架构的ubuntu16.04更换了系统源 update提示无法下载一些包 404 Not Found
X86_64架构的ubuntu16.04更换了系统源 update提示无法下载一些包 404 Not Found
2022-07-17 21:02:29 2013
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人