题目:
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000
例如, 罗马数字 2 写做 II
,即为两个并列的 1。12 写做 XII
,即为 X
+ II
。 27 写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
I
可以放在V
(5) 和X
(10) 的左边,来表示 4 和 9。X
可以放在L
(50) 和C
(100) 的左边,来表示 40 和 90。C
可以放在D
(500) 和M
(1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
思路:
构造字典存储符合并匹配
def romanToInt(self, s: str) -> int:
t = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000,'IV':4,'IX':9,'XL':40,'XC':90,'CD':400,'CM':900}
su = 0
i = 0
while i < len(s):
if i == len(s)-1:
su+=t[s[i]]
else:
if s[i]+s[i+1] in t:
su+=t[s[i]+s[i+1]]
i += 1
else:
su+=t[s[i]]
print(su)
i += 1
return su
这样有个坏处,每次循环需要进行两个判断,考虑到罗马数字有个规律除特殊情况外,小的数字在大的数字右边,根据该规则可以对其进行更改。
def romanToInt(self, s: str) -> int:
t = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000}
su = 0
for i in range(len(s)):
if i<len(s)-1 and t[s[i]]<t[s[i+1]]:
su -= t[s[i]]
else:
su += t[s[i]]
return su
如果当前数字比下一个数字小,只需要对其相减即可