文章目录
1.线程和进程
一个类比:
-
一个工厂,至少有一个车间,一个车间中至少有一个工人,最终是工人在工作。
-
一个程序,至少有一个进程,一个进程中至少有一个线程,最终是线程在工作。
上述串行的代码示例就是一个程序,在使用python xx.py 运行时,内部就创建一个进程(主进程),在进程中创建了一个线程(主线程),由线程逐行运行代码。
进程和线程:
线程,是计算机中可以被cpu调度的最小单元(真正在工作)。
进程,是计算机资源分配的最小单元(进程为线程提供资源)。
一个进程中可以有多个线程,同一个进程中的线程可以共享此进程中的资源。
通过 进程 和 线程 都可以将 串行
的程序变为并发
,对于上述示例来说就是同时下载三个视频,这样很短的时间内就可以下载完成。
基于多线程对上述串行示例进行优化:
- 一个工厂,创建一个车间,这个车间中创建 3个工人,并行处理任务。
- 一个程序,创建一个进程,这个进程中创建 3个线程,并行处理任务。
2.多线程 多进程开发例子
常见的程序开发中,计算操作需要使用CPU多核优势,IO操作不需要利用CPU的多核优势,所以,就有这一句话:
- 计算密集型,用多进程,例如:大量的数据计算【累加计算示例】。
- IO密集型,用多线程,例如:文件读写、网络数据传输【下载抖音视频示例】。
如果程序想利用 计算机的多核优势,让CPU同时处理一些任务,适合用多进程开发(即使资源开销大)。
2.1 多线程例子:
包含内容:import threading 模块 使用方式:
t = threading.Thread(target=task, args=(name, url))
t.start()
import time
import requests
import threading
url_list = [
("东北F4模仿秀.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0300f570000bvbmace0gvch7lo53oog"),
("卡特扣篮.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f3e0000bv52fpn5t6p007e34q1g"),
("罗斯mvp.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg")
]
def task(file_name, video_url):
res = requests.get(video_url)
with open(file_name, mode='wb') as f:
f.write(res.content)
print(time.time())
for name, url in url_list:
# 创建线程,让每个线程都去执行task函数(参数不同)
t = threading.Thread(target=task, args=(name, url))
t.start()
2.2 多进程 例子:
import multiprocessing
t = multiprocessing.Process(target=函数名, args=(name, url))
t.start()
import time
import requests
import multiprocessing
# 进程创建之后,在进程中还会创建一个线程。
# t = multiprocessing.Process(target=函数名, args=(name, url))
# t.start()
url_list = [
("东北F4模仿秀.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0300f570000bvbmace0gvch7lo53oog"),
("卡特扣篮.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f3e0000bv52fpn5t6p007e34q1g"),
("罗斯mvp.mp4", "https://aweme.snssdk.com/aweme/v1/playwm/?video_id=v0200f240000buuer5aa4tij4gv6ajqg")
]
def task(file_name, video_url):
res = requests.get(video_url)
with open(file_name, mode='wb') as f:
f.write(res.content)
print(time.time())
if __name__ == '__main__':
print(time.time())
for name, url in url_list:
t = multiprocessing.Process(target=task, args=(name, url))
t.start()
3.线程常见方法
t.start() 线程准备就绪,等待CPU调度,具体时间有CPU定
t.join() 等待当前线程的任务执行完毕后再向下执行
t.setDaemon(布尔值)
,守护线程(必须放在start之前)
t.setDaemon(True)
,设置为守护线程,主线程执行完毕后,子线程也自动关闭。t.setDaemon(False)
,设置为非守护线程,主线程等待子线程,子线程执行完毕后,主线程才结束。
线程的名字的设置与获取:
import threading
def task(arg):
# 获取当前执行此代码的线程
name = threading.current_thread().getName()
print(name)
for i in range(10):
t = threading.Thread(target=task, args=(11,))
t.setName('日魔-{}'.format(i))
t.start()
- 线程类 在run方法内写入要做的事情
import threading
class MyThread(threading.Thread):
def run(self):
print('执行此线程', self._args)
t = MyThread(args=(100,))
t.start()
4.线程安全 线程锁和死锁
4.1 线程安全
一个进程中可以有多个线程,且线程共享所有进程中的资源。
多个线程同时去操作一个"东西",可能会存在数据混乱的情况,例如:
-
示例1
import threading loop = 10000000 number = 0 def _add(count): global number for i in range(count): number += 1 def _sub(count): global number for i in range(count): number -= 1 t1 = threading.Thread(target=_add, args=(loop,)) t2 = threading.Thread(target=_sub, args=(loop,)) t1.start() t2.start() t1.join() # t1线程执行完毕,才继续往后走 t2.join() # t2线程执行完毕,才继续往后走 print(number)
这样子,由CPU调度两者的执行顺序,两者同时开始执行的话,会因为使用了相同的数字number而导致资源抢占。资源使用混乱了,比如add线程把number调过去,调去前数字为99,增加1,此时数字为100,在同时sub线程调用了number,也是99,减去1,再保存回去,此时的数字就,98,因为减法后保存的,用的是最后的值。(原本的值应该是99的,但是这样一来变为98了)
解决办法:加锁
4.2 线程锁
lock_object = threading.RLock() 递归锁 可以多次申请和释放锁
lock_object = threading.Lock() 同步锁 不能多次申请锁和释放
import threading
lock_object = threading.RLock()
loop = 10000000
number = 0
def _add(count):
lock_object.acquire() # 加锁
global number
for i in range(count):
number += 1
lock_object.release() # 释放锁
def _sub(count):
lock_object.acquire() # 申请锁(等待)
global number
for i in range(count):
number -= 1
lock_object.release() # 释放锁
t1 = threading.Thread(target=_add, args=(loop,))
t2 = threading.Thread(target=_sub, args=(loop,))
t1.start()
t2.start()
t1.join() # t1线程执行完毕,才继续往后走
t2.join() # t2线程执行完毕,才继续往后走
print(number)
import threading
num = 0
lock_object = threading.RLock()
def task():
print("开始")
lock_object.acquire() # 第1个抵达的线程进入并上锁,其他线程就需要再此等待。
global num
for i in range(1000000):
num += 1
lock_object.release() # 线程出去,并解开锁,其他线程就可以进入并执行了
print(num)
for i in range(2):
t = threading.Thread(target=task)
t.start()
- 基于上下文管理器,在内部自动执行acquire 和release
import threading
num = 0
lock_object = threading.RLock()
def task():
print("开始")
with lock_object: # 基于上下文管理,内部自动执行 acquire 和 release
global num
for i in range(1000000):
num += 1
print(num)
for i in range(2):
t = threading.Thread(target=task)
t.start()
递归锁 RLock:
import threading
import time
lock_object = threading.RLock()
def task():
print("开始")
lock_object.acquire()
lock_object.acquire()
print(123)
lock_object.release()
lock_object.release()
for i in range(3):
t = threading.Thread(target=task)
t.start()
4.3 死锁:
由于资源竞争导致死锁,编程时避免:
import threading
import time
lock_1 = threading.Lock()
lock_2 = threading.Lock()
def task1():
lock_1.acquire()
time.sleep(1)
lock_2.acquire()
print(11)
lock_2.release()
print(111)
lock_1.release()
print(1111)
def task2():
lock_2.acquire()
time.sleep(1)
lock_1.acquire()
print(22)
lock_1.release()
print(222)
lock_2.release()
print(2222)
t1 = threading.Thread(target=task1)
t1.start()
t2 = threading.Thread(target=task2)
t2.start()
这里的情况是:t1线程,t2线程定义锁的启动和解除,但是t1要求先解除1,后解除2, t2要求先解除2后解除1这就导致两者都解不开。
5.线程池
5.1 背景
Python3中官方才正式提供线程池。
线程不是开的越多越好,开的多了可能会导致系统的性能更低了,例如:如下的代码是不推荐在项目开发中编写。
不建议:无限制的创建线程。
5.2 线程池使用方式
import time
from concurrent.futures import ThreadPoolExecutor
# pool = ThreadPoolExecutor(100)
# pool.submit(函数名,参数1,参数2,参数...)
def task(video_url,num):
print("开始执行任务", video_url)
time.sleep(5)
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
url_list = ["www.xxxx-{}.com".format(i) for i in range(300)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
pool.submit(task, url,2)
print("END")
- 等待线程池的任务执行完毕
import time
from concurrent.futures import ThreadPoolExecutor
def task(video_url):
print("开始执行任务", video_url)
time.sleep(5)
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
url_list = ["www.xxxx-{}.com".format(i) for i in range(300)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
pool.submit(task, url)
print("执行中...")
pool.shutdown(True) # 等待线程池中的任务执行完毕后,在继续执行
print('继续往下走')
5.3 线程池与回调函数
如果要求在线程池管理的线程函数执行完毕后再干点其他的事情,就用到了回调函数(call_back),回调函数是在线程函数执行完毕后触发的。以下为示例:
import time
import random
from concurrent.futures import ThreadPoolExecutor, Future
def task(video_url):
print("开始执行任务", video_url)
time.sleep(2)
return random.randint(0, 10)
def done(response):
print("任务执行后的返回值", response.result())
# 创建线程池,最多维护10个线程。
pool = ThreadPoolExecutor(10)
url_list = ["www.xxxx-{}.com".format(i) for i in range(15)]
for url in url_list:
# 在线程池中提交一个任务,线程池中如果有空闲线程,则分配一个线程去执行,执行完毕后再将线程交还给线程池;如果没有空闲线程,则等待。
future = pool.submit(task, url)
future.add_done_callback(done) # 是子主线程执行
# 可以做分工,例如:task专门下载,done专门将下载的数据写入本地文件。
6.单例模式
6.1 单例类的定义
在某种情况下,要求一个类只有一个对象,在后面每次定义这个对象时用的都是同一个对象,这就要求类的形式是单例类。
以后开发会遇到单例模式,每次实例化类的对象时,都是最开始创建的那个对象,不再重复创建对象。
6.2 实现方式:new 和init方法中定义
-
简单的实现单例模式
class Singleton: instance = None def __init__(self, name): self.name = name def __new__(cls, *args, **kwargs): # 返回空对象 if cls.instance: return cls.instance # 就是说cls内默认有一个参数 instance,判断出这个参数是空的就说明没有定义过对象,如果是有数的就说明定义过 # 如果定义过就不会在定义了,用之前的然后返回 cls.instance = object.__new__(cls) return cls.instance obj1 = Singleton('alex') obj2 = Singleton('SB') print(obj1,obj2)
-
多线程执行单例模式,有BUG
import threading import time class Singleton: instance = None def __init__(self, name): self.name = name def __new__(cls, *args, **kwargs): if cls.instance: return cls.instance time.sleep(0.1) # bug在于如果多线程的方式执行,如果多个类都执行到这里,因为有 延时,所以在判断到没有对象时要新建一个对象,在等待0.1s时另一个线程也到了 #另一个线程中因为没有检测到这个线程新建的实例,所以也认为是没有实例,所以也要执行新建一个实例,这样就新建了2个实例 cls.instance = object.__new__(cls) return cls.instance def task(): obj = Singleton('x') print(obj) for i in range(10): t = threading.Thread(target=task) t.start()
-
加锁解决BUG
import threading import time class Singleton: instance = None lock = threading.RLock() # 类中定义递归锁 def __init__(self, name): self.name = name def __new__(cls, *args, **kwargs): with cls.lock: if cls.instance: return cls.instance time.sleep(0.1) cls.instance = object.__new__(cls) # 只有当释放这个锁之后才会由其他的线程获得这个锁,才能够新建对象,所以每次新建都只有一个线程执行 return cls.instance def task(): obj = Singleton('x') print(obj) for i in range(10): t = threading.Thread(target=task) t.start()
-
加判断,提升性能
import threading import time class Singleton: instance = None lock = threading.RLock() def __init__(self, name): self.name = name def __new__(cls, *args, **kwargs): if cls.instance: return cls.instance # 因为只有在sleep时出现的问题,所以可以把sleep前的判断到有实例存在的部分拿到前面执行,如果有实例就不要申请锁和释放锁了 with cls.lock: if cls.instance: return cls.instance time.sleep(0.1) cls.instance = object.__new__(cls) return cls.instance def task(): obj = Singleton('x') print(obj) for i in range(10): t = threading.Thread(target=task) t.start()
## 6.3 在模块实例化
```python
# utils.py
class Singleton:
def __init__(self):
self.name = "武沛齐"
...
single = Singleton()
from xx import single
print(single)
from xx import single
print(single)
7.多线程的TCP通讯
- 服务端
import socket
import threading
def task(conn):
while True:
client_data = conn.recv(1024)
data = client_data.decode('utf-8')
print("收到客户端发来的消息:", data)
if data.upper() == "Q":
break
conn.sendall("收到收到".encode('utf-8'))
conn.close()
def run():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('127.0.0.1', 8001))
sock.listen(5)
while True:
# 等待客户端来连接(主线程)
# 每检测到一个连接就会创建一个子线程
conn, addr = sock.accept()
# 创建子线程
t = threading.Thread(target=task, args=(conn,))
t.start()
sock.close()
if __name__ == '__main__':
run()
- 客户端
import socket
# 1. 向指定IP发送连接请求
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(('127.0.0.1', 8001))
while True:
txt = input(">>>")
client.sendall(txt.encode('utf-8'))
if txt.upper() == 'Q':
break
reply = client.recv(1024)
print(reply.decode("utf-8"))
# 关闭连接,关闭连接时会向服务端发送空数据。
client.close()