1.时间复杂度:
时间复杂度其实即使算法执行次数n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用"O"来表示数量级,时间复杂度的表达式为。
T(n)=O(f(n));
本文详细介绍了如何分析算法的时间复杂度和空间复杂度,包括最坏时间复杂度的重要性、递归算法的时间复杂度计算方法。同时,通过二分查找和递归实现斐波那契数列的例子,具体分析了这两个算法的时间复杂度和空间复杂度,二分查找的时间复杂度为O(log2N),空间复杂度为O(1),而递归斐波那契数列的时间复杂度为O(2^N),空间复杂度为O(N)。
1.时间复杂度:
时间复杂度其实即使算法执行次数n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用"O"来表示数量级,时间复杂度的表达式为。
T(n)=O(f(n));
12万+
5450
1890
3480

被折叠的 条评论
为什么被折叠?