斐波那契数列求解以及时间空间复杂度分析

本文介绍了斐波那契数列的定义,并详细讲解了递归和非递归两种方法来求解斐波那契数列。对于递归解法,分析了其时间复杂度为指数级,空间复杂度与递归深度相关。而非递归解法则通过循环实现,具有更好的时间效率,空间复杂度较低。
摘要由CSDN通过智能技术生成

1 斐波那契数列定义 

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……

在数学上,斐波纳契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*) 

2 斐波那契数列求解

2.1 递归求解

    //递归求解
    public static int solveFibonacciByRE(int n){
        if(n==0){
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值