关于双端队列BFS的一些思考(acwing 175)

       BFS是依靠队列进行的,每次从队头取出一个点并向外部扩散 (可以构造递推数组),再将更新出来的点加入队列,周而复始。

       这样BFS队列就有两个极重要的性质:

              1.两段性 指队列可被分为两段,后半段永远比前半段大  

              2.单调性

        换言之,若题目能构造出这样队列,便能使用BFS,acwing 175 是一道被称为电路维修的题目   175. 电路维修 - AcWing题库

        不难发现,这个题目和最短路问题很像,但是却又有所不同,它迷宫格子的连通性可以改变

且只有两种可能,这两种状态可用0和1表示,即是否需要操作,只需将不需要操作的点放在队头,而需要操作的放在队尾,便可满足这两个性质,并使用BFS,下面是代码(y总的,我写的很乱):

        

#include <cstring>
#include <iostream>
#include <algorithm>
#include <deque>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 510, M = N * N;

int n, m;
char g[N][N];
int dist[N][N];
bool st[N][N];

int bfs()
{
    memset(dist, 0x3f, sizeof dist);
    memset(st, 0, sizeof st);
    dist[0][0] = 0;
    deque<PII> q;
    q.push_back({0, 0});

    char cs[] = "\\/\\/";
    int dx[4] = {-1, -1, 1, 1}, dy[4] = {-1, 1, 1, -1};
    int ix[4] = {-1, -1, 0, 0}, iy[4] = {-1, 0, 0, -1};

    while (q.size())
    {
        PII t = q.front();
        q.pop_front();

        if (st[t.x][t.y]) continue;
        st[t.x][t.y] = true;

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.x + dx[i], b = t.y + dy[i];
            if (a < 0 || a > n || b < 0 || b > m) continue;

            int ca = t.x + ix[i], cb = t.y + iy[i];
            int d = dist[t.x][t.y] + (g[ca][cb] != cs[i]);

            if (d < dist[a][b])
            {
                dist[a][b] = d;

                if (g[ca][cb] != cs[i]) q.push_back({a, b});
                else q.push_front({a, b});
            }
        }
    }

    return dist[n][m];
}

int main()
{
    int T;
    scanf("%d", &T);
    while (T -- )
    {
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; i ++ ) scanf("%s", g[i]);

        int t = bfs();

        if (t == 0x3f3f3f3f) puts("NO SOLUTION");
        else printf("%d\n", t);
    }

    return 0;
}

作者:yxc
链接:https://www.acwing.com/activity/content/code/content/132139/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值