BFS是依靠队列进行的,每次从队头取出一个点并向外部扩散 (可以构造递推数组),再将更新出来的点加入队列,周而复始。
这样BFS队列就有两个极重要的性质:
1.两段性 指队列可被分为两段,后半段永远比前半段大
2.单调性
换言之,若题目能构造出这样队列,便能使用BFS,acwing 175 是一道被称为电路维修的题目 175. 电路维修 - AcWing题库
不难发现,这个题目和最短路问题很像,但是却又有所不同,它迷宫格子的连通性可以改变
且只有两种可能,这两种状态可用0和1表示,即是否需要操作,只需将不需要操作的点放在队头,而需要操作的放在队尾,便可满足这两个性质,并使用BFS,下面是代码(y总的,我写的很乱):
#include <cstring>
#include <iostream>
#include <algorithm>
#include <deque>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 510, M = N * N;
int n, m;
char g[N][N];
int dist[N][N];
bool st[N][N];
int bfs()
{
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st);
dist[0][0] = 0;
deque<PII> q;
q.push_back({0, 0});
char cs[] = "\\/\\/";
int dx[4] = {-1, -1, 1, 1}, dy[4] = {-1, 1, 1, -1};
int ix[4] = {-1, -1, 0, 0}, iy[4] = {-1, 0, 0, -1};
while (q.size())
{
PII t = q.front();
q.pop_front();
if (st[t.x][t.y]) continue;
st[t.x][t.y] = true;
for (int i = 0; i < 4; i ++ )
{
int a = t.x + dx[i], b = t.y + dy[i];
if (a < 0 || a > n || b < 0 || b > m) continue;
int ca = t.x + ix[i], cb = t.y + iy[i];
int d = dist[t.x][t.y] + (g[ca][cb] != cs[i]);
if (d < dist[a][b])
{
dist[a][b] = d;
if (g[ca][cb] != cs[i]) q.push_back({a, b});
else q.push_front({a, b});
}
}
}
return dist[n][m];
}
int main()
{
int T;
scanf("%d", &T);
while (T -- )
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ ) scanf("%s", g[i]);
int t = bfs();
if (t == 0x3f3f3f3f) puts("NO SOLUTION");
else printf("%d\n", t);
}
return 0;
}
作者:yxc
链接:https://www.acwing.com/activity/content/code/content/132139/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。