什么是边缘检测
上图左边是一张图片,中间的是过滤器(卷积核),右边的是经过一次卷积产生的图像,这个流程被称为垂直边缘检测
左边图片中明显左右亮度不一致,因此图片中间会产生一条垂直的直线,我们通过中间的卷积核进行卷积,会得到右边的暗明暗的一张图像,实际上中间明亮的区域就是检测出来的垂直边缘,但是由于图片只有6x6的尺寸,所以中间的垂直边缘显示的不是一条直线而是一块明亮的区域,当图片变为1000x1000的时候,这种情况就会改善很多
同理,我们将卷积核换成上图便可以进行水平边缘检测
什么是正边与负边
实际上:是明->暗的过渡;暗->明的过度。
由于左边的图像的翻转,通过卷积运算:实现暗->明的过程。
上述可以得知:左边的是垂直边缘滤波器左边较亮;右边是暗的。右边:水平边缘滤波器:上面为亮,下面是暗色的。
上述:30 是左边区域和核的卷积,可以看出上面亮,底部暗。所以是正的边缘。-30是负的边缘。
上述:通过反向传播,学习滤波器的参数。
往往可以根据需求更换卷积核上的数字,比如sobel滤波器和scharr滤波器。
Padding
在做图像卷积的时候缺点:
1、图像缩小,没每次识别边缘或者识别其他特征时候越来越小。
2、在不断卷积的过程中,意味着不断的重复中间区域,丢掉了图像的边缘部分的很多信息。
为了解决这些问题,我们对图像周边进行填充,
所以通过填充padding=1,得到一个6*6的图像。通过padding可以削弱忽视边缘信息的这个缺点。
根据填充元素数量的不同,可以将卷积分为Vaild卷积和Same卷积
Vaild:卷积之前不进行填充,如果你有一个fxf的卷积核,经过一次卷积之后生成(n-f+1)x(n-f+1)的输出。
Same:卷积之前对图像进行填充,保证图像的输入和输出是一样的。
因此,当卷积核尺寸为奇数时,只要选择合适的填充尺寸,就能够得到和图像输入相同尺寸的输出。
注意:一般的f是奇数。