什么是边缘检测

本文介绍了边缘检测的基本概念,通过垂直和水平边缘检测实例演示了卷积操作在寻找图像变化中的作用。讲解了正负边缘的概念,以及Padding在避免信息丢失和保持输出尺寸的重要性,还区分了Valid和Same卷积。重点讨论了滤波器的选择和参数调整,如Sobel和Scharr滤波器,以及边缘检测在实际项目中的应用。
摘要由CSDN通过智能技术生成

什么是边缘检测

在这里插入图片描述
上图左边是一张图片,中间的是过滤器(卷积核),右边的是经过一次卷积产生的图像,这个流程被称为垂直边缘检测
在这里插入图片描述
左边图片中明显左右亮度不一致,因此图片中间会产生一条垂直的直线,我们通过中间的卷积核进行卷积,会得到右边的暗明暗的一张图像,实际上中间明亮的区域就是检测出来的垂直边缘,但是由于图片只有6x6的尺寸,所以中间的垂直边缘显示的不是一条直线而是一块明亮的区域,当图片变为1000x1000的时候,这种情况就会改善很多
在这里插入图片描述
同理,我们将卷积核换成上图便可以进行水平边缘检测

什么是正边与负边

实际上:是明->暗的过渡;暗->明的过度。
在这里插入图片描述
由于左边的图像的翻转,通过卷积运算:实现暗->明的过程。
在这里插入图片描述
上述可以得知:左边的是垂直边缘滤波器左边较亮;右边是暗的。右边:水平边缘滤波器:上面为亮,下面是暗色的。
在这里插入图片描述
上述:30 是左边区域和核的卷积,可以看出上面亮,底部暗。所以是正的边缘。-30是负的边缘。
在这里插入图片描述
上述:通过反向传播,学习滤波器的参数。
在这里插入图片描述
往往可以根据需求更换卷积核上的数字,比如sobel滤波器和scharr滤波器。

Padding

在做图像卷积的时候缺点:
1、图像缩小,没每次识别边缘或者识别其他特征时候越来越小。
2、在不断卷积的过程中,意味着不断的重复中间区域,丢掉了图像的边缘部分的很多信息。
为了解决这些问题,我们对图像周边进行填充,
在这里插入图片描述
在这里插入图片描述
所以通过填充padding=1,得到一个6*6的图像。通过padding可以削弱忽视边缘信息的这个缺点。
在这里插入图片描述
根据填充元素数量的不同,可以将卷积分为Vaild卷积和Same卷积
Vaild:卷积之前不进行填充,如果你有一个fxf的卷积核,经过一次卷积之后生成(n-f+1)x(n-f+1)的输出。
Same:卷积之前对图像进行填充,保证图像的输入和输出是一样的。
因此,当卷积核尺寸为奇数时,只要选择合适的填充尺寸,就能够得到和图像输入相同尺寸的输出。
注意:一般的f是奇数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值