简介
卷积神经网络可以用于图像,音频、视频。
举个例子,输入图片为X,经过卷积神经网络处理,计算机最后识别出图像内的字母是X。
哪怕图像经过平移、旋转、加厚,依然能够识别出图像为X。
虽然图像经过了旋转,但是他依然保留了原图的某些特征。
上图的三个九宫格分别代表三个卷积核,也叫特征提取器,它用来提取原图的三种特征。
如上图所示。
什么是卷积运算
卷积运算代表卷积核在原图上进行运动扫描,卷积核与扫描部分的对应位置数字相乘然后再求和得出新的值。
上图绿框部分经过卷积核扫描求平均值为1,表示绿框中的值和卷积核完全一样。
继续用原来的卷积核扫描图像的中间部分,这次的平均值为0.55,代表该部分与卷积核的图像特征并不相同,但仍旧保留了0.55的相似性。
利用卷积核将原图完全扫描一遍可以得出结果,结果为1的部分代表与提取出来的特征,结果数字越低的代表相似程度越低。
利用不同的卷积核对不同的特征进行提取。
激活函数
将结果中小于0的部分全部改成0。
池化
为了提高运算速度,所以要对图片进行缩小,这里用到了池化。
池化分为两种
1.使用该区域较大的值代表该区域的特征
2.使用该区域的平均值代表该区域的特征
最大池化
全连接层
梯度下降
寻找误差最小的值