卷积神经网络的工作原理

卷积神经网络(CNN)在图像识别中扮演关键角色,即使图像经历平移、旋转等变换也能准确识别。通过卷积核进行特征提取,不同卷积核对应不同图像特征。激活函数用于调整结果,池化层减小图像尺寸并保留关键特征。全连接层和梯度下降用于优化模型,找到最小误差值。
摘要由CSDN通过智能技术生成

简介

卷积神经网络可以用于图像,音频、视频。
在这里插入图片描述
举个例子,输入图片为X,经过卷积神经网络处理,计算机最后识别出图像内的字母是X。
在这里插入图片描述
哪怕图像经过平移、旋转、加厚,依然能够识别出图像为X。
在这里插入图片描述
在这里插入图片描述
虽然图像经过了旋转,但是他依然保留了原图的某些特征。
在这里插入图片描述
上图的三个九宫格分别代表三个卷积核,也叫特征提取器,它用来提取原图的三种特征。
在这里插入图片描述
如上图所示。

什么是卷积运算

在这里插入图片描述
卷积运算代表卷积核在原图上进行运动扫描,卷积核与扫描部分的对应位置数字相乘然后再求和得出新的值。
在这里插入图片描述
上图绿框部分经过卷积核扫描求平均值为1,表示绿框中的值和卷积核完全一样。
在这里插入图片描述
继续用原来的卷积核扫描图像的中间部分,这次的平均值为0.55,代表该部分与卷积核的图像特征并不相同,但仍旧保留了0.55的相似性。
在这里插入图片描述
利用卷积核将原图完全扫描一遍可以得出结果,结果为1的部分代表与提取出来的特征,结果数字越低的代表相似程度越低。
在这里插入图片描述
利用不同的卷积核对不同的特征进行提取。

激活函数

在这里插入图片描述
将结果中小于0的部分全部改成0。

池化

为了提高运算速度,所以要对图片进行缩小,这里用到了池化。
池化分为两种
1.使用该区域较大的值代表该区域的特征
2.使用该区域的平均值代表该区域的特征在这里插入图片描述
最大池化
在这里插入图片描述
在这里插入图片描述

全连接层

在这里插入图片描述

梯度下降

在这里插入图片描述
在这里插入图片描述
寻找误差最小的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值