机器学习——支持向量机

目录

一.支持向量机内容

1.SVM简介

2.SVM原理

3.SVM具有以下优点

二.SVM大纲

1.最大间隔与分类

2.对偶问题

3.核函数

4.支持向量回归

三.代码训练

四.实验总结


一.支持向量机内容

1.SVM简介

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。

2.SVM原理

支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,用于进行分类和回归分析。它的原理基于统计学习理论中的结构风险最小化思想。

SVM的主要思想是将数据映射到高维特征空间,在该空间中找到一个最优的超平面,将不同类别的样本分开。这个超平面被称为决策边界,它具有最大的间隔,能够最好地区分不同类别的样本。

SVM的工作原理可以概括为以下几个步骤:

  1. 数据预处理:首先对数据进行预处理,包括特征选择、特征缩放等操作,确保数据的可用性和一致性。

  2. 特征映射:将数据映射到高维特征空间。通过使用核函数(kernel function),可以避免实际进行高维空间的计算,而是通过在低维空间中计算核函数的值来实现。

  3. 寻找最优超平面:在特征空间中,寻找一个最优的超平面,使得不同类别的样本能够被最大间隔地分开。这个最优超平面由支持向量表示,支持向量是距离超平面最近的样本点。

  4. 分类与回归:将新的数据点投影到特征空间中,通过判断其位于哪一侧来进行分类或回归预测。

3.SVM具有以下优点

  • 在高维特征空间中进行计算,能够更好地处理线性和非线性可分问题。
  • 通过最大间隔原则,具有较好的鲁棒性和泛化能力。
  • 可以通过选择不同的核函数适应不同的数据类型。

二.SVM大纲

1.最大间隔与分类

· 线性模型:

在样本空间中寻找一个超平面, 将不同类别的样本分开
问题 :将训练样本分开的超平面可能有很多, 哪一个好呢?
很明显,中间红色的直线效果最好: 容忍性好, 鲁棒性高, 泛化能力最强.
· 拓展多维平面
那么如何得到最大化间隔呢?
超平面方程:
最大化间隔 : 寻找参数 w
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值