分组TOP-N的mpreduce高效实现(采用了排序控制、分区控制、分组控制)

本文介绍了一种高效实现分组求TOP-N的方法,通过MapReduce框架,结合排序控制、分区控制和分组控制来实现。具体操作包括自定义`OrderIdPartitioner`保证相同订单id的数据发送至同一reduce task,使用`OrderBean`类进行数据比较和排序,以及定制`OrderIdGroupingComparator`确保正确分组。最后,通过`OrderTopnMapper`、`OrderTopnReducer`和JobSubmitter类完成任务提交。
摘要由CSDN通过智能技术生成

需求:有如下数据,求出每一个订单id中成交金额最大的三笔交易(字段分别为:订单id,用户id,商品名称,单价,数量),即分组求TOP-N。

order001,u001,小米6,1999.9,2

order001,u001,雀巢咖啡,99.0,2

order001,u001,安慕希,250.0,2

order001,u001,经典红双喜,200.0,4

order001,u001,防水电脑包,400.0,2

order002,u002,小米手环,199.0,3

order002,u002,榴莲,15.0,10

order002,u002,苹果,4.5,20

order002,u002,肥皂,10.0,40

 

实现思路:

实现思路:

map: 读取数据切分字段(用逗号切分),封装数据到一个OrderBean对象中作为key传输,key要按照成交金额比大小

reduce:利用自定义GroupingComparator将数据按订单id进行分组,然后在reduce方法中输出每组数据的前N条即可

 

(1)首先需要保证的是让orderid相同的数据发送给相同的reduce task,如果同一个订单没有发送到同一个reduce task,那么排序为局部排序,没有意义。为了完成此目的,需要继承Partitioner类自定义一个OrderIdPartitioner类。(未自定义前是按照key的哈希值进行分区,本例中key为OrderBean对象,不同对象的哈希值肯定不同)。我们需要做的是按照OrderBean对象的orderid分区。

OrderIdPartitioner类代码如下:

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;

public class OrderIdPartitioner extends Partitioner<OrderBean, NullWri
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值