nyoj 536 开心的mdd(最优矩阵链乘)dp

开心的mdd

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述

himdd有一天闲着无聊,随手拿了一本书,随手翻到一页,上面描述了一个神奇的问题,貌似是一个和矩阵有关的东西。

给出三个矩阵和其行列A1(10*100),A2(100*5),A3(5*50)。现在himdd要算出计算矩阵所要的乘法次数,他发现不同的计算次序,所要的乘法次数也不一样,

如:

(A1*A2)*A3 : 10*100*5+5*10*50=7500;

A1*(A2*A3) : 5*100*50+10*100*50 =75000;

他想知道计算矩阵所要的最少乘法次数是多少,很快一个解法就诞生了,有点小happy~~现在他想问问你是否也能找出一个解法呢?

注意:矩阵不可改变顺序。

输入
有多组测试数据(<=100),每组表述如下:
第一行,有一个整数n矩阵的个数(1<=n<=100)
接下来有n行
第i行有两整数,r,c表示第i个矩阵的行列;(1<=r,c<=100)
输出
输出计算矩阵所要的最少乘法次数。
样例输入
3
10 100
100 5
5 50
样例输出
7500

分析:本题类型是最优矩阵链乘问题,状态方程dp(i,j)=min(dp(i,k)+dp(k+1,j)+r[i]*c[k]*c[j]);其中(0<k<n-1);记忆化搜索

AC代码;

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 2147483647
const int maxn=100+10;
int r[maxn],c[maxn];
int d[maxn][maxn];
int n;
int dp(int i,int j){
	int& ans=d[i][j];
	if(ans>0)return ans;
	if(i>=j)return 0;
	if(j==i+1)return r[i]*c[i]*c[j];
	ans=INF;
	for(int k=i;k<j;k++)
	ans=min(ans,dp(i,k)+dp(k+1,j)+r[i]*c[k]*c[j]);
	return ans; 
}
int main(){
	while(scanf("%d",&n)==1){
		for(int i=0;i<n;i++)
		 scanf("%d%d",&r[i],&c[i]);
		
	 memset(d,0,sizeof(d));
	 
	 int ans=INF;
	 for(int k=0;k<n;k++){
	 	ans=min(ans,dp(0,k)+dp(k+1,n-1)+r[0]*c[k]*c[n-1]);
	 }
	 printf("%d\n",ans);
	}
	return 0;
} 


递推求解:

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 2147483647
const int maxn=100+10;
int r[maxn],c[maxn];
int dp[maxn][maxn];
int n;

int main(){
	while(scanf("%d",&n)==1){
		for(int i=1;i<=n;i++)
		 {
		 scanf("%d%d",&r[i],&c[i]);
		 dp[i][i]=0;
		}
	 
	for(int len=2;len<=n;len++)   //长度 
	 for(int i=1;i<=n-len+1;i++){ //起点 
	 	int j=i+len-1;   //终点 
	 	dp[i][j]=INF;
	  for(int k=i;k<=j;k++)
	 	dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+r[i]*c[k]*c[j]);
	}
	
		 printf("%d\n",dp[1][n]);
  }
	return 0;
} 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏油

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值