Java虚拟机-垃圾回收相关算法(垃圾清除阶段)

本文介绍了JVM中的三种垃圾回收算法:标记–清除算法、复制算法和标记–压缩算法。详细阐述了每种算法的工作原理、优缺点,并进行了对比。

概述
  • 通过引用计数法和可达性分析算法成功区分出内存中哪些对象时需要回收的对象以后,GC接下来的任务就是执行垃圾回收,释放掉无用垃圾所占用的内存空间,以便有足够的可用内存空间为新对象分配内存。

  • 在JVM中比较常见的三种垃圾收集算法有:

  • 标记–清除算法 (Mark – Sweep)
  • 复制算法 (Copying)
  • 标记–压缩算法(Mark – Compact)
标记–清除算法 (Mark – Sweep)

标记–清除算法时一种非常基础和常见的垃圾收集算法,该算法被提出者在1960年用在了Lisp语言。

  • 执行过程
    当系统的有效空间(available memory)被耗尽的时候,就会停止整个程序(也称为:Stop the world)然后进行两个工作:标记和清除
  • 标记:Collector从引用根节点开始遍历,标记所有被引用的对象。一般是在Header中记录为可达的对象。
  • 清除:Collector从对堆内存从头到位进行线性遍历,如果发现某个对象在Header中没有标记为可达对象,那么将其被回收。
    在这里插入图片描述
  • 缺点
  • 效率不高(需要通过根节点遍历所有的对象并标记(还是两次一次标记一次清除),虽然不是遍历所有的对象)
  • 再进行GC的时候,需要停止整个应用,导致用户体验差
  • 这种清理出来的空间是不连续的产生内存碎片。需要维护一个空闲列表。
  • 什么是清除

所谓的清除并不是真的置空,而是把需要清除的对象保存在空闲地址列表中。下次有新的对象需要加载时,判断垃圾的位置是否足够,如果足够则存放。

复制算法 (Copying)
  • 背景
    为了解决标记–清除算法的缺陷,于是1963年的一个大牛设计出了 复制算法

  • 核心思想
    将活着的内存空间分为两块,每次只使用其中的一块,在垃圾回收时将正在使用的内存中的活对象复制到未被使用的内存块中,之后将正在使用的内存块中的所有对象进行清除,交换两个内存的角色,最后完成垃圾回收。

  • 之前讲的对象内存分配的时候就采用了这种方式
    在这里插入图片描述

  • 优点

  • 没有标记和清除过程,实现简单运行高效。
  • 复制过去后,保证空间连续,不会出现碎片问题。
  • 缺点
  • 缺点很明显的就是需要使用两倍的空间
  • 对于G1这种分拆成大量region的GC,复制而不是移动,意味着GC需要维护region的对象引用关系,不管是内存占用还是时间开销也不小。
  • 特别
    如果系统中垃圾对象很多,复制算法需要存活的对象数量并不会太大,活着非常低才行(所以只有新生代采用了这种方式,因为绝大多数的对象都是朝生夕死)
标记–压缩(整理)算法(Mark – Compact)
  • 背景
    1.复制算法的高效是建立在存活对象少,垃圾对象多的前提下。这种情况在新生代比较常见,但是老年代更常见的是存活对象比较多。如果这种情况再使用复制算法,由于存活对象比较多,复制成本也将很高。因此:基于老年代垃圾回收的特性,需要使用其他的算法。
    2.标记–清除算法的确可以应用在老年代中,但是该算法不仅执行效率低下,而且会产生碎片化问题,所以在此算法之上进行了改进,标记压缩算法由此诞生。
    3.1970年前后,发布了标记–压缩算法,在许多垃圾回收器中,人们都使用了这种算法或其改进版本。

  • 执行过程
    第一阶段和标记–清除算法一样,从根节点开始标记所有的引用对象。
    第二阶段将所有的存活对象压缩到内存的一端,按照顺序摆放后,清理边界外所有的空间。

在这里插入图片描述

  • 标记–压缩算法最终效果等同于 标记–清除算法 完成后增加了内存碎片整理的过程。因此也可以称为标记–压缩–整理算法(Mark–Sweep–Compact)。二者的本质区别是标记–清除算法是一种非移动式的回收算法。标记–压缩是移动式的算法,是否移动式的回收对象是一种优缺点并存的决策。

  • 标记存活的对象会被整理。按照内存地址依次排序,而未被标记的内存将会回收掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表少了许多开销。

  • 优缺点
    优点:

  • 消除了标记–清除算法中内存区域分散的缺点,我们需要给新对象分配内存时,JVM只需要持有内存的起始地址即可。
  • 消除了复制算法中,内存减半的问题。

缺点:

  • 从效率上来讲,标记–压缩算法效率上低于复制算法。
  • 移动对象的同时,如果对象被其他对象引用,那么同时需要修改其引用地址。
  • 移动过程中,需要全程终止用户线程。即STW
三种算法的对比
.Mark-SweepMark-CompactCopying
速度中等最慢最快
空间开销少(但是会堆积碎片)少(不堆积碎片)通常需要活对象的两倍大小(不堆积碎片)
移动对象
  • 从效率上来说复制算法时最快的,但是浪费了太多的空间。
  • 而为了尽量满足上面的三个指标,标记整理算法相对更平衡一些,你是效率上不尽人意,比标记-清除算法多了一个整理阶段,比复制算法多了一个标记阶段。
基于STM32F103单片机,设计了一款智能火灾烟雾检测报警器。该系统能够实时监测环境中的烟雾浓度,并在检测到烟雾浓度超过预设阈值时触发报警,有效预防火灾事故的发生。 主要功能 烟雾浓度检测:通过MQ-135烟雾传感器实时采集环境中的烟雾浓度数据。 LCD显示:使用LCD1602液晶显示屏实时显示当前的烟雾浓度值。 报警功能:当烟雾浓度超过预设阈值时,系统会通过蜂鸣器发出报警信号。 阈值设置:用户可以通过按键设置烟雾浓度的报警阈值,设置的阈值会存储在单片机的Flash中,掉电不丢失。 硬件设计 核心板:采用STM32F103C8T6单片机作为控制核心。 传感器:使用MQ-135烟雾传感器进行烟雾浓度检测。 显示模块:采用LCD1602液晶显示屏显示烟雾浓度。 报警模块:使用蜂鸣器作为报警装置。 按键模块:提供三个按键用于设置烟雾浓度的报警阈值。 软件设计 数据采集:通过AD转换将传感器采集的模拟信号转换为数字信号。 数据处理:对采集到的数据进行处理,计算出实际的烟雾浓度值。 报警逻辑:当烟雾浓度超过预设阈值时,触发报警逻辑,控制蜂鸣器发出报警信号。 阈值设置:通过按键设置烟雾浓度的报警阈值,并将设置的阈值存储在单片机的Flash中。 使用说明 系统启动:上电后,系统自动启动,开始检测环境中的烟雾浓度。 显示查看:通过LCD1602液晶显示屏查看当前的烟雾浓度值。 阈值设置:按下设置键进入阈值设置模式,通过设置+和设置-键调整阈值,设置完成后系统自动保存。 报警触发:当烟雾浓度超过预设阈值时,蜂鸣器会发出报警信号,提醒用户注意。 注意事项 传感器通电后需要预热20秒左右,测量的数据才会稳定。 传感器发热属于正常现象,因为内部有电热丝。 系统设计时考虑了功耗控制,但在长时间使用时仍需注意电源管理。
内容概要:本文介绍了名为《考虑储能和可再生能源误差的售电公司购售电策略(Python代码实现)》的研究,该研究属于顶级SCI复现项目,聚焦于电力市场中售电公司在日考虑储能和可再生能源误差的售电公司购售电策略(Python代码实现)前和日内两个时间尺度下的购售电决策优化。研究综合考虑了储能系统的运行特性以及可再生能源(如风电、光伏)出力预测的不确定性误差,构建了相应的数学模型,并通过Python编程实现了优化求解,旨在帮助售电公司降低运营风险、提高经济效益。文中还提到了相关配套资源,包括YALMIP工具包和其他完整资源的网盘链接,便于读者复现和扩展研究。; 适合人群:具备一定电力系统基础知识和Python编程能力的研究生、科研人员及从事能源优化、电力市场分析等相关领域的技术人员。; 使用场景及目标:①用于复现顶级SCI论文中的购售电优化模型;②研究含不确定性的可再生能源接入背景下,售电公司的风险规避与利润最大化策略;③掌握多时间尺度(日前与日内)优化调度的建模与编程实现方法; 阅读建议:建议读者结合提供的代码和网盘资料,逐步理解模型构建逻辑,重点关注不确定性建模、目标函数设计及约束条件设置,并通过调整参数进行仿真测试,加深对售电公司运营策略的理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值