Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
注意 :递归里面的起始位置是i 不是i+1,这样i位置的值就可以重复取
class Solution {
public:
vector
> combinationSum(vector
& candidates, int target) {
sort(candidates.begin(),candidates.end());
return combination(candidates,0,target);
}
vector
> combination(vector
& candidates,int pos, int target){ int i=pos; vector
> ret; while(i
target) break; if( (i+1)
tmp(1,candidates[i]); ret.push_back(tmp); i++; continue; } vector
> tmp=combination(candidates,i,target-candidates[i]);//这里是i而不是i+1,这样在进去的递归里面还可以重复取candidates[i] for(int k=0;k
0;k++) { if(tmp[k].size()>0) { tmp[k].insert(tmp[k].begin(),candidates[i]); ret.push_back(tmp[k]); } } i++; } //sort(ret.begin(),ret.end()); //ret.erase( unique( ret.begin(),ret.end() ), ret.end() ); return ret; } };