kMP解析

KMP算法是一种改进的字符串匹配算法

思路http://www.cnblogs.com/c-cloud/p/3224788.html

对于next的理解next[i] 表示i点不匹配(不包括i点)时,前面有next[i]个匹配的前缀(0,next[i])下次要跳转到next[i]开始比较,P[K]不等于P[q]时(图中是j),由于已经到了目前的k,q了,那么 p[0]……p[k-1] 与 p[q-1-(k-1)]……p[q-1]就是相等的

next[k] 表示 p[0]……p[k-1] 中有next[k]的最长公共前后缀,就是p[0]……p[k-1]这区间里面 前一部分(长度是next[k]) 和 后一部分是相同相等的

相等的传递性,那么p[0]……p[k-1]这区间里面 前一部分(长度是next[k]) 与 p[q-1-(k-1)]……p[q-1] 的后部分 (长度是next[k]) 也是相等的,所以k=next[k] 来移位

如下图:绿色区域相等(不包括k,j点),红色区域相等,所以红色区域与蓝色区域相等

 如:

 P      a    b   a    b   a

 j      0    1   2    3   4

 next    -1   0   0    1   2

 即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1] ,不包括j

代码:http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html

 

void getNext(char *p,int *next)
{
    int j,k;
    next[0]=-1;
    j=0;
    k=-1;
    while(j<strlen(p)-1)
    {
        if(k==-1||p[j]==p[k])    //匹配的情况下,p[j]==p[k]
        {
            j++;
            k++;
            next[j]=k;
        }
        else                   //p[j]!=p[k]
            k=next[k];
    }
}
int KMPMatch(char *s,char *p)
{
    int next[100];
    int i,j;
    i=0;
    j=0;
    getNext(p,next);
    while(i<strlen(s))
    {
        if(j==-1||s[i]==p[j])
        {
            i++;
            j++;
        }
        else
        {
            j=next[j];       //消除了指针i的回溯
        }
        if(j==strlen(p))	//找到了
            return i-strlen(p);
    }
    return -1;
}

 

 

 

#include
#include
using namespace std;

// i=next[j] 表示strM中第j位不匹配 那就跳到strM[i] 开始在比较
void getNext(string &str, vector &next) {
	int len = str.length();
	int j = 0;
	int k = -1;
	next[0] = -1;
	while (j < len - 1) {
		if (k == -1 || str[j] == str[k]) {
			j++;//注意这里++了
			// 注意16行这里++了 下一句等价 没有 加加时的 next[j+1]=k+1,所以第j+1个不匹配,
			//跳到next[j+1]=k+1的位置继续与j+1开始比较,因为j+1之前的k个位置与 0-k的位置都是匹配---str[j] == str[k]
			k++;
            //j=1 第1位不匹配,跳到k=0=next[j],从第0位开始比较,j=0时则j=next[j]=-1,
            //就是此时的i 与j=0都不匹配那只有i++,j++了--------对应26行至28行			
			next[j] = k;
		}
		else
		    // str[j] != str[k],但是p[0]^p[k-1]与p[j-1-(k-1)]^p[j-1]是相等的,同时p[0]^p[ next[k] - 1 ] 与p[k-1 -next[k] ]^p[k-1] 是相等的,
		    //由相等的传递性可知p[0]^p[ next[k] - 1 ] 与p[j-1-(next[k]-1)]^p[j-1]是相等的,所以k= next[k],跳 next[k]处开始比较。
			k = next[k];
	}
}

int KmpMatch(string &str, string &strM) {
	int lenM = strM.length();
	vector vecNext(lenM, 0);
	getNext(strM, vecNext);
	int j = 0;
	int i = 0;
	while ( i < str.length() ) {
		if (j == -1 || strM[j] == str[i]) {
			j++;
			i++; // 当j==-1时,说明 str[i]!=strM[0] ---才会有j=vecNenxt[0]=-1...所以j++,i++前移以为
		}
		else { // i不用动
			j = vecNext[j];
		}
		if (j == lenM)	//找到了
			return i - lenM;
	}
	return -1;
}
void main()
{
	string str = "ababcwdfaabaxbaababa";
	string strM = "abaxba";
	cout << KmpMatch(str, strM) << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值