KMP算法是一种改进的字符串匹配算法
思路:http://www.cnblogs.com/c-cloud/p/3224788.html
对于next的理解:next[i] 表示i点不匹配(不包括i点)时,前面有next[i]个匹配的前缀(0,next[i])下次要跳转到next[i]开始比较,P[K]不等于P[q]时(图中是j),由于已经到了目前的k,q了,那么 p[0]……p[k-1] 与 p[q-1-(k-1)]……p[q-1]就是相等的。
next[k] 表示 p[0]……p[k-1] 中有next[k]的最长公共前后缀,就是p[0]……p[k-1]这区间里面 前一部分(长度是next[k]) 和 后一部分是相同相等的,
由相等的传递性,那么p[0]……p[k-1]这区间里面 前一部分(长度是next[k]) 与 p[q-1-(k-1)]……p[q-1] 的后部分 (长度是next[k]) 也是相等的,所以k=next[k] 来移位
如下图:绿色区域相等(不包括k,j点),红色区域相等,所以红色区域与蓝色区域相等
如:
P a b a b a
j 0 1 2 3 4
next -1 0 0 1 2
即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1] ,不包括j
代码:http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html
void getNext(char *p,int *next)
{
int j,k;
next[0]=-1;
j=0;
k=-1;
while(j<strlen(p)-1)
{
if(k==-1||p[j]==p[k]) //匹配的情况下,p[j]==p[k]
{
j++;
k++;
next[j]=k;
}
else //p[j]!=p[k]
k=next[k];
}
}
int KMPMatch(char *s,char *p)
{
int next[100];
int i,j;
i=0;
j=0;
getNext(p,next);
while(i<strlen(s))
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
{
j=next[j]; //消除了指针i的回溯
}
if(j==strlen(p)) //找到了
return i-strlen(p);
}
return -1;
}
#include
#include
using namespace std;
// i=next[j] 表示strM中第j位不匹配 那就跳到strM[i] 开始在比较
void getNext(string &str, vector &next) {
int len = str.length();
int j = 0;
int k = -1;
next[0] = -1;
while (j < len - 1) {
if (k == -1 || str[j] == str[k]) {
j++;//注意这里++了
// 注意16行这里++了 下一句等价 没有 加加时的 next[j+1]=k+1,所以第j+1个不匹配,
//跳到next[j+1]=k+1的位置继续与j+1开始比较,因为j+1之前的k个位置与 0-k的位置都是匹配---str[j] == str[k]
k++;
//j=1 第1位不匹配,跳到k=0=next[j],从第0位开始比较,j=0时则j=next[j]=-1,
//就是此时的i 与j=0都不匹配那只有i++,j++了--------对应26行至28行
next[j] = k;
}
else
// str[j] != str[k],但是p[0]^p[k-1]与p[j-1-(k-1)]^p[j-1]是相等的,同时p[0]^p[ next[k] - 1 ] 与p[k-1 -next[k] ]^p[k-1] 是相等的,
//由相等的传递性可知p[0]^p[ next[k] - 1 ] 与p[j-1-(next[k]-1)]^p[j-1]是相等的,所以k= next[k],跳 next[k]处开始比较。
k = next[k];
}
}
int KmpMatch(string &str, string &strM) {
int lenM = strM.length();
vector vecNext(lenM, 0);
getNext(strM, vecNext);
int j = 0;
int i = 0;
while ( i < str.length() ) {
if (j == -1 || strM[j] == str[i]) {
j++;
i++; // 当j==-1时,说明 str[i]!=strM[0] ---才会有j=vecNenxt[0]=-1...所以j++,i++前移以为
}
else { // i不用动
j = vecNext[j];
}
if (j == lenM) //找到了
return i - lenM;
}
return -1;
}
void main()
{
string str = "ababcwdfaabaxbaababa";
string strM = "abaxba";
cout << KmpMatch(str, strM) << endl;
}