数据产品进阶指南
文章平均质量分 86
从一线从业者视角出发,介绍数据产品的相关知识、实战经验分享
数据产品小lee
脚踏实地
展开
-
数仓分层能减少重复计算,为啥能减少?如何减少?这篇文章包懂!
看一些数据领域的文章,说到为什么做数据仓库、数据仓库要分层,我们经常会看到一些结论:因为有ABCD…等等理由,比如降低开发成本、减少重复计算等等好处然后,多数人就记住了ABCD。但是,每每被问起来,为什么,有什么案例,你是怎么理解的,就被问住,傻眼了。原创 2023-11-06 22:28:42 · 122 阅读 · 0 评论 -
指标管理系统从0到1,从规划到落地,这篇文章手把手教会你
看完了这么多,感觉很复杂,是吧?化繁为简。先抛开修饰词、业务域、数据域,只关注指标和维度。我建议你从SQL(结构化查询语言)的角度去重新理解指标管理。为什么数据产品经理要懂点技术,我认为核心是要懂点SQL。因为懂了SQL,才能从SQL(物理模型语言)的角度去理解这些一切一切。其实SQL也不用掌握太深,只要看懂最简单的代码就够了。我们看看下面这段语句,其含义是:统计2023年12月12号当天不同支付类型的订单数量。假如我们的支付方式有两种:wechat和alipay,那么最终的表格会如下:dt。原创 2024-07-24 17:49:50 · 1396 阅读 · 0 评论 -
数据仓库基础1-维度模型
数仓避坑指南-搞懂维度模型原创 2021-12-15 13:19:11 · 2446 阅读 · 2 评论 -
不会提问不打紧,不敢提问才要命
相对于信息爆炸的世界,语言所能表达出来的内容就像是沧海一粟,书到用时方恨少,尽力表达就好~原创 2023-11-27 12:02:12 · 1056 阅读 · 0 评论 -
数据仓库基础2-如何理解业务过程
业务过程,是人为选定的原创 2021-12-15 20:12:03 · 1328 阅读 · 0 评论 -
数据仓库基础4-搞懂维度
维度模型的灵魂,是维度原创 2021-12-15 13:45:35 · 3280 阅读 · 0 评论 -
数仓该如何分层
数仓分层,要结合业务需要原创 2022-01-04 19:28:29 · 1904 阅读 · 0 评论 -
一文搞懂元数据
理解元数据,才能做数据产品原创 2021-12-17 10:39:17 · 4360 阅读 · 1 评论 -
CDP体系化建设1-CDP综述
有了名字,那一般还会给名称做详细的注解,也就是「定义」。可能你在其他书里看过 CDP 定义,或许你深表赞同,或许你持保留意见。单地从概念、名词角度进行区分,也始终都只是在抽象的世界里绕来绕去。以前刚做数据仓库时,时常背诵其特点:它是面向主题的,集成的、稳定的、时变的数据集合,面向数据分析,用以支持管理决策。而经历了多个数据仓库实战项目后,这些定义反倒记不得了,需要专门翻资料才能列齐,但这些定义已经溶解在了更加具象化的案例中了。然后归纳总结,形成自己的理解。原创 2023-11-16 12:51:00 · 264 阅读 · 1 评论 -
指标管理必知的真相:订单事实表里没有原子指标
与其叫做原子指标,不如叫做词根指标原创 2023-11-30 01:47:24 · 915 阅读 · 0 评论 -
数据仓库基础3-整明白粒度
粒度,是数据仓库的关键原创 2021-12-15 13:35:14 · 1900 阅读 · 2 评论 -
一文帮你更好地理解指标
数据指标,是数据产品必须要掌握的原创 2021-12-17 10:46:41 · 1268 阅读 · 0 评论 -
数字、数据、元数据、数据模型、数据标准,这篇文章讲清楚了
数字、数据、元数据、数据模型、数据标准,这些概念必须要区分清楚原创 2021-12-17 10:44:48 · 3234 阅读 · 0 评论 -
一个问题鉴定指标管理真实力:订单表里有原子指标吗?
在企业花了上百万的成本实操,我才明白指标管理是这样的原创 2023-11-28 21:48:11 · 955 阅读 · 0 评论 -
用「埋点」记录自己,不妄过一生
互联网人可能对埋点不陌生,干啥事都要埋点。而对于非互联网的朋友,我还得介绍一下。用「行为记录/跟踪」来解释,可能更好理解。小红书不是有人这么起标题嘛:请大数据把这条推送给所有的集美们,我不允许你们不知道 xxx。嗯,大数据已经成了年轻人的梗。梗是梗,我就问一句:大数据凭啥给你推?ta凭啥就能知道谁喜欢啥,谁需要啥?因为埋点了!因为对用户的行为进行了记录和跟踪,发现了用户的喜好和潜在需求!原创 2023-11-06 22:43:10 · 92 阅读 · 0 评论