牛顿迭代法

引言

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

在数值分析中,牛顿迭代法是一种常用的求解非线性方程根的方法。它基于函数的导数和函数值的信息,通过不断迭代逼近方程的根。本文将介绍牛顿迭代法的原理、步骤以及一个简单的示例应用。

原理

牛顿迭代法的基本思想是利用函数的切线来逼近方程的根。假设我们要求解的方程 f(x)=0 ,从一个初始近似解 x_{0} 开始,我们可以利用函数 f(x) 在 x = x_{0} 处的切线来估计方程的根。切线的斜率为 f'(x_{0}) ,所以切线与 x 轴的交点就是一个新的近似解。通过不断迭代这个过程,我们可以逼近方程的根。

步骤

1.选择初始解:

        选择一个合适的初始近似解 x_{0}。(初始解的选择会对最终求解结果存在一定的影响,后面将具体展开讨论)

2.计算切线交点:

        计算函数 f(x) 在 x=x_{0} 处的函数值 f(x_{0}) 和导数值 f'(x_{0})

3.更新近似解:

        根据切线方程 y = f'(x_{0})(x - x_{0}) + f(x_{0}) 可以得到近似解 x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}

4.判断精度:

        如果满足精度要求,则停止迭代;否则,继续迭代,重复步骤 2 和步骤 3 。

不难得到,在迭代过程中方程近似解的递推关系式为:x_{i} = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}

应用实例

利用牛顿迭代法求解方程 x=e^{-x} 在 x=1 附近的根。

%% 牛顿迭代法
clc,clear
% 利用牛顿迭代法求解 x = e^(-x) 在 x = 1 附近的根
syms x
f = x - exp(-x);
df = diff(f, x);
% 设置精度
eps = 0.0001;
% 初始解
X = zeros(1, 1000);
X(1) = 1;
% 迭代
for i = 2:1000
    X(i) = X(i - 1) - subs(f, x, X(i - 1)) / subs(df, x, X(i - 1));
    % 设置迭代终止条件
    if (abs(X(i) - X(i - 1)) < eps)
        fprintf("方程 %s = 0 的根为:%f\n", f, X(i))
        break
    end
end

局限性

虽然牛顿迭代法在数值计算中被广泛应用,并且通常收敛速度很快,但它也有一些缺点需要考虑:

1.初始值敏感性:牛顿迭代法的收敛性高度依赖于初始近似解的选择。如果初始值选择不当,可能导致迭代发散或者收敛到错误的根。

2.导数计算困难:在某些情况下,计算函数的导数困难比计算函数本身更加困难,尤其是对于复杂的非线性函数。如果导数计算不准确,可能导致迭代结果不稳定或者出现误差。

3.局部收敛性:(重中之重)牛顿迭代法只能保证在某个根的局部收敛,而无法保证全局收敛性。这也佐证了恰当的初始解才会搜索到正确的近似根。

  • 12
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值