热传导/物质扩散算法应用于推荐

全文共1512个字,2张图,预计阅读时间8分钟。


没有大量的数据,没有大量的人力就不能做好推荐么?当然不是,热传导/物质扩散推荐算法就是作为冷启动及小规模团队非常实用的推荐召回部分的算法。


目标是为a图中标有星号(不妨记为用户1)的用户推荐商品,该用户已经购买过的两件商品是我们可以利用的信息,用来给目标用户进行推荐。


物质扩散算法:

640?wx_fmt=png


初始,我们认为每件被目标用户购买过的商品的信息量为1。


商品把自己的信息平均分给所有购买过它的用户,用户的信息值则是从所有商品所得到的信息值得总和,比如上图(b)中的第一个节点的信息就等于第一个商品平均分给三个用户的的平均信息1/3,再加上第四个商品平均分给两个用户的平均信息1/2,即为1/3+1/2=5/6;接下来,每一个用户再把自己的信息平均分给所有购买过的商品,商品的信息则是从所有用户收到的信息值得总和,如对于图(c)中的第一个商品,它的信息值就等于第一个用户信息值的一半,为5/12,加上第二个用户信息值的1/4,为5/24,再加上第三个用户信息值得一半,为1/6,总的能量值即为:5/12+5/24+1/6=19/24。


以上两个步骤加起来为从商品到商品信息扩散一步。针对大规模系统的推荐,为了保持实时性和效率,往往只需扩散三步以内。如果以一步为界,基于图(c)中的结果,则在目标用户没有购买过的所有商品中,第三个商品的信息值最大,因此基于物质扩散算法的推荐系统则会将此商品推荐给目标用户,同时可以得到对于用户1的商品得分排序,自然可以得到用户召回集。值得注意的是物质扩散这种算法得到的所有商品最后的信息值之和就等于初始时所有商品的信息值,即能量是守恒的,图(c)中所有商品的信息之和仍为2。


热传导算法:


640?wx_fmt=png


初始,我们认为目标用户购买过的每件商品的信息量为1。


目标用户的信息等于所有他购买过的商品信息的平均值,如图(d)所示,目标用户购买了商品1和商品4,则该用户的信息值即为(1 + 1) / 2 = 1。再根据目标用户浏览过的商品给所以商品计算信息,第一个商品、第四个商品信息量为1/2,其他商品的信息量为0(因为目标用户没有买过),接下来根据每一个商品的信息计算其他的用户的信息,如图(d)中的第二个用户的信息就为商品1,2,3,4的信息的平均值(1/2 + 1/2)/4 = 1/2;再根据每个用户的信息量平均分配信息到每个商品,如图(e)中的第一个商品来自第一个、第二个、第三个用户的信息的和,即为1/21/2+1/21/3+1/2*/12=2/3。


以上两个步骤加起来为从商品到商品热传导一步。因此基于热传导算法的推荐系统则会将此信息量大的商品推荐给目标用户,同时可以得到对于用户1的商品得分排序,自然可以得到用户召回集。与物质扩散不同的是这种算法得到的所有商品最后的信息值之和就不一定等于初始时所有商品的信息值,即不满足守恒定律,这是因为在信息传到的第二步过程中,有的用户的信息可能会被多次计算,从而导致不守恒。


基于物质扩散和基于热传导的推荐算法的区别在于: 基于物质扩散的方法在进行个性化推荐时,系统的总信息是守恒的;而热传导在推荐过程中,目标用户(即被推荐用户)的收藏品将被视作信息初始点,负责提供能量,所以系统的总信息量随着传递步骤的增加是在不断增加的。


如果对物理比较熟悉的朋友很容易联想到凸透镜和凹透镜,是的,我个人在理解的时候也是这样迁移理解,原理上确实一致。 基于物质扩散的方法相当于凸透镜一样把用户历史点击的信息聚焦到了少量优势的skn上了; 基于热传导的方法相当于是凹透镜一样把用户的历史点击信息发散到了那些较不流行的物品上,从而提高了推荐的新颖多样性。


原文链接:https://www.jianshu.com/p/c1e083b39d8b


查阅更为简洁方便的分类文章以及最新的课程、产品信息,请移步至全新呈现的“LeadAI学院官网”:

www.leadai.org


请关注人工智能LeadAI公众号,查看更多专业文章

640?wx_fmt=jpeg

大家都在看

640.png?

LSTM模型在问答系统中的应用

基于TensorFlow的神经网络解决用户流失概览问题

最全常见算法工程师面试题目整理(一)

最全常见算法工程师面试题目整理(二)

TensorFlow从1到2 | 第三章 深度学习革命的开端:卷积神经网络

装饰器 | Python高级编程

今天不如来复习下Python基础

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值