运动目标检测小实现

参考论文《一种基于帧差法与背景减法的运动目标检测新方法》实现的目标检测方法程序,实现起来效果略微有点。。奇特。

没有采用文章中提到的将图像进行边缘提取后再做差而是直接将图像灰度化做差;

背景模型采用的比较主流的混合高斯模型;

好像运行到最后一帧视频会bug,请忽略。。

阈值请根据实际情况自行调节

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include <cvaux.h>//必须引此头文件1

#define threshold_diff1 20 //设置简单帧差法阈值
#define threshold_diff2 20 //设置简单帧差法阈值

using namespace cv;
using namespace std;

int main(int argc,unsigned char* argv[])
{
    Mat img_src1,img_src2,img_src3;//3帧法需要3帧图片
    Mat img_dst,gray1,gray2,gray3;
    Mat gray_diff1,gray_diff2;//存储2次相减的图片
	Mat gray_diff11,gray_diff12;
	Mat gray_diff21,gray_diff22;
    Mat gray;//用来显示前景的
    bool pause=false;

    VideoCapture vido_file("ant2.avi");//在这里改相应的文件名
    namedWindow("foreground",0);
	//1
	 BackgroundSubtractorMOG2 mog;

	 Mat foreground;
	 Mat background;

	 Mat frame;
     //1
    for (;;)
    {
        if(!false)
        {
            vido_file >>img_src1;

			  // 运动前景检测,并更新背景
			  mog(img_src1, foreground, 0.002);     			 // dilate(foreground, foreground, Mat());
			  // 腐蚀
			  erode(foreground, foreground, Mat());
			  // 膨胀
			  dilate(foreground, foreground, Mat());
			  mog.getBackgroundImage(background);  // 返回当前背景图像
			  imshow("高斯模型前景", foreground);
			  imshow("高斯模型背景", background);

            cvtColor(img_src1,gray1,CV_BGR2GRAY);
        
            waitKey(33);
            vido_file >>img_src2;
            cvtColor(img_src2,gray2,CV_BGR2GRAY);
            imshow("video_src",img_src2);//

            waitKey(33);
            vido_file >>img_src3;

            cvtColor(img_src3,gray3,CV_BGR2GRAY);

			//Sobel(gray1,gray1,	CV_8U,1,0,3,0.4,128);
			//Sobel(gray2,gray2,	CV_8U,1,0,3,0.4,128);
			//Sobel(gray3,gray3,	CV_8U,1,0,3,0.4,128);

            subtract(gray2,gray1,gray_diff11);//第二帧减第一帧
			subtract(gray1,gray2,gray_diff12);
			add(gray_diff11,gray_diff12,gray_diff1);
            subtract(gray3,gray2,gray_diff21);//第三帧减第二帧
			subtract(gray2,gray3,gray_diff22);
			add(gray_diff21,gray_diff22,gray_diff2);

            for(int i=0;i<gray_diff1.rows;i++)
                for(int j=0;j<gray_diff1.cols;j++)
                {
                    if(abs(gray_diff1.at<unsigned char>(i,j))>=threshold_diff1)//这里模板参数一定要用unsigned char,否则就一直报错
                        gray_diff1.at<unsigned char>(i,j)=255;            //第一次相减阈值处理
                    else gray_diff1.at<unsigned char>(i,j)=0;

                    if(abs(gray_diff2.at<unsigned char>(i,j))>=threshold_diff2)//第二次相减阈值处理
                        gray_diff2.at<unsigned char>(i,j)=255;
                    else gray_diff2.at<unsigned char>(i,j)=0;
                }
            bitwise_and(gray_diff1,gray_diff2,gray);
			//add(gray,foreground,gray);
			gray=gray&foreground;
			//
			dilate(gray,gray,Mat());erode(gray,gray,Mat());dilate(gray,gray,Mat());
		
            imshow("foreground",gray);
        }
        if( cvWaitKey(33) >= 0 )
	    break;
    }
    return 0;
}


  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值