学习视频链接:1. 量化流程_哔哩哔哩_bilibili
环境配置:(作者配置环境在最后)
requirements.txt中只有安装以下几个,这是不够的
numpy、 onnx >= 1.9.0、 protobuf、 torch >= 1.6.0 tqdm
安装torch前最好先看一下TensorRT支持的cuda和cudnn版本,否则可能出现安装不成功的情况。
1、根据自己系统的cuda安装合适的torch和torchvision
2、pip install -r requirements.txt
这样最后运行的时候会出现一个报错,protobuf的版本过高,使用pip install protobuf==3.20.2
3、python setup.py install
这里应该会自动下载最新的ppq(作者这里的是ppq=0.6.6)
4、如果没有安装再使用pip install ppq即可
5、pip install pycuda,或者下载whl文件,pycuda库下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#pycuda
6、需要安装VS开发者工具,作者安装的版本为2017 安装教程:
Visual Studio下载安装教程(非常详细)从零基础入门到精通,看完这一篇就够了_visual studio安装教程-CSDN博客
查看系统环境变量:E:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\bin\Hostx86\x64
7、安装tenosrRT
安装教程:Windows11(CUDA11.7)下安装TensorRT_cuda11.7对应的cudnn-CSDN博客
最好安装最新的,旧的版本没有python文件夹
核心重点:
将 TensorRT-8.5.2.2\include中头文件 copy 到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include
将TensorRT-8.5.2.2\lib 中所有lib文件 copy 到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\lib\x64
将TensorRT-8.5.2.2\lib 中所有dll文件copy 到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin
配置完成后重启pycharm再进行检验。
8、安装完python文件夹中的whl文件后,需要对graphsurgeon、onnx_graphsurgeon、uff文件夹中的whl文件进行安装,pip即可
9、pip install ninja
这个文件会出现报错比较多,看了很多博客,最后是因为torch的版本过高,降低torch的版本就可以进行编译了。
以上就基本完成了ppq的环境配置,后续根据工程需要再进行配置环境。
作者配置环境主要如下:
python=3.7.16
cuda=10.2
cudnn=8.6
ninja=1.11.1.1
protobuf=3.20.2
pycuda=2022.1
torch-1.10.0+cu102-cp37-cp37m-win_amd64
torchvision-0.11.0+cu102-cp37-cp37m-win_amd64
TensorRT-8.5.3.1.Windows10.x86_64.cuda-10.2.cudnn8.6
参考(部分):
Windows11(CUDA11.7)下安装TensorRT_cuda11.7对应的cudnn-CSDN博客
pytorch配置安装 ninja报错:ninja: build stopped: subcommand failed.(个人趟坑)-CSDN博客