对于傅里叶变换中这样的性质:
时域 频域
连续 非周期
离散 周期
解释如下:
- 从公式的角度
FT和DFT的因子一个为ejwt ,一个为ejkw0n 。
显然当w变为w+2pi时,前者改变而后者不变。 - 离散信号可以看做梳状函数对连续信号的采样,必然是周期延拓。
反之,由傅里叶变换的对偶性质可得:
频域 时域
连续 非周期
离散 周期
对于傅里叶变换中这样的性质:
时域 频域
连续 非周期
离散 周期
解释如下:
反之,由傅里叶变换的对偶性质可得:
频域 时域
连续 非周期
离散 周期